Keywords: Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem
@article{AUPO_2016_55_1_a6,
author = {Khripunova, Marina B. and Stepanov, Sergey E. and Tsyganok, Irina I. and Mike\v{s}, Josef},
title = {On {Uniqueness} {Theoremsfor} {Ricci} {Tensor}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {47--52},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674599},
zbl = {1373.53045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/}
}
TY - JOUR AU - Khripunova, Marina B. AU - Stepanov, Sergey E. AU - Tsyganok, Irina I. AU - Mikeš, Josef TI - On Uniqueness Theoremsfor Ricci Tensor JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 47 EP - 52 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/ LA - en ID - AUPO_2016_55_1_a6 ER -
%0 Journal Article %A Khripunova, Marina B. %A Stepanov, Sergey E. %A Tsyganok, Irina I. %A Mikeš, Josef %T On Uniqueness Theoremsfor Ricci Tensor %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 47-52 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/ %G en %F AUPO_2016_55_1_a6
Khripunova, Marina B.; Stepanov, Sergey E.; Tsyganok, Irina I.; Mikeš, Josef. On Uniqueness Theoremsfor Ricci Tensor. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 47-52. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/
[1] DeTurck, D., Koiso, N.: Uniqueness and non-existence of metrics with prescribed Ricci curvature. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359. | MR | Zbl
[2] Hamilton, R. S.: The Ricci curvature equation. Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72. | MR
[3] Becce, A. L.: Einstein manifolds. Springer-Verlag, Berlin–Heidelberg, 1987. | MR
[4] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. American Journal of Mathematics 86, 1 (1964), 109–160. | DOI | MR | Zbl
[5] Stepanov, S., Tsyganok, I.: Vanishing theorems for projective and harmonic mappings. Journal of Geometry 106, 3 (2015), 640–641. | MR
[6] Yano, K., Bochner, S.: Curvature and Betti numbers. Princeton Univ. Press, Princeton, 1953. | MR | Zbl
[7] Vilms, J.: Totally geodesic maps. Journal of Differential Geometry 4, 1 (1970), 73–79. | DOI | MR | Zbl
[8] Schoen, R., Yau, S. T.: Harmonic maps and topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341. | DOI | MR
[9] Yau, S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana University Mathematics Journal 25, 7 (1976), 659–679. | DOI | MR | Zbl
[10] Yau, S. T.: Seminar on Differential Geometry. Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982. | MR | Zbl
[11] Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. Journal of Differential Geometry 3, 3-4 (1969), 379–392. | DOI | MR
[12] Pigola, S., Rigoli, M., Setti, A. G.: Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique. Birkhäuser, Basel, 2008. | MR | Zbl