On Uniqueness Theoremsfor Ricci Tensor
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 47-52 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.
In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.
Classification : 53C20
Keywords: Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem
@article{AUPO_2016_55_1_a6,
     author = {Khripunova, Marina B. and Stepanov, Sergey E. and Tsyganok, Irina I. and Mike\v{s}, Josef},
     title = {On {Uniqueness} {Theoremsfor} {Ricci} {Tensor}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {47--52},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674599},
     zbl = {1373.53045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/}
}
TY  - JOUR
AU  - Khripunova, Marina B.
AU  - Stepanov, Sergey E.
AU  - Tsyganok, Irina I.
AU  - Mikeš, Josef
TI  - On Uniqueness Theoremsfor Ricci Tensor
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 47
EP  - 52
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/
LA  - en
ID  - AUPO_2016_55_1_a6
ER  - 
%0 Journal Article
%A Khripunova, Marina B.
%A Stepanov, Sergey E.
%A Tsyganok, Irina I.
%A Mikeš, Josef
%T On Uniqueness Theoremsfor Ricci Tensor
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 47-52
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/
%G en
%F AUPO_2016_55_1_a6
Khripunova, Marina B.; Stepanov, Sergey E.; Tsyganok, Irina I.; Mikeš, Josef. On Uniqueness Theoremsfor Ricci Tensor. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 47-52. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a6/

[1] DeTurck, D., Koiso, N.: Uniqueness and non-existence of metrics with prescribed Ricci curvature. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359. | MR | Zbl

[2] Hamilton, R. S.: The Ricci curvature equation. Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72. | MR

[3] Becce, A. L.: Einstein manifolds. Springer-Verlag, Berlin–Heidelberg, 1987. | MR

[4] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. American Journal of Mathematics 86, 1 (1964), 109–160. | DOI | MR | Zbl

[5] Stepanov, S., Tsyganok, I.: Vanishing theorems for projective and harmonic mappings. Journal of Geometry 106, 3 (2015), 640–641. | MR

[6] Yano, K., Bochner, S.: Curvature and Betti numbers. Princeton Univ. Press, Princeton, 1953. | MR | Zbl

[7] Vilms, J.: Totally geodesic maps. Journal of Differential Geometry 4, 1 (1970), 73–79. | DOI | MR | Zbl

[8] Schoen, R., Yau, S. T.: Harmonic maps and topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341. | DOI | MR

[9] Yau, S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana University Mathematics Journal 25, 7 (1976), 659–679. | DOI | MR | Zbl

[10] Yau, S. T.: Seminar on Differential Geometry. Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982. | MR | Zbl

[11] Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. Journal of Differential Geometry 3, 3-4 (1969), 379–392. | DOI | MR

[12] Pigola, S., Rigoli, M., Setti, A. G.: Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique. Birkhäuser, Basel, 2008. | MR | Zbl