Keywords: Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point
@article{AUPO_2016_55_1_a2,
author = {Benchohra, Mouffak and Bouriah, Soufyane and Lazreg, Jamal E. and Nieto, Juan J.},
title = {Nonlinear {Implicit} {Hadamard{\textquoteright}s} {Fractional} {Differential} {Equationswith} {Delay} in {Banach} {Space}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {15--26},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674595},
zbl = {1362.34010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/}
}
TY - JOUR AU - Benchohra, Mouffak AU - Bouriah, Soufyane AU - Lazreg, Jamal E. AU - Nieto, Juan J. TI - Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 15 EP - 26 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/ LA - en ID - AUPO_2016_55_1_a2 ER -
%0 Journal Article %A Benchohra, Mouffak %A Bouriah, Soufyane %A Lazreg, Jamal E. %A Nieto, Juan J. %T Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 15-26 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/ %G en %F AUPO_2016_55_1_a2
Benchohra, Mouffak; Bouriah, Soufyane; Lazreg, Jamal E.; Nieto, Juan J. Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/
[1] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Springer-Verlag, New York, 2012. | MR | Zbl
[2] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl
[3] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. | DOI | MR | Zbl
[4] Ahmad, B., Ntouyas, S. K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17 (2014), 348–360. | DOI | MR | Zbl
[5] Ahmad, B., Ntouyas, S. K.: Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differential Equations 2015, 77 (2015), 1–9. | MR | Zbl
[6] Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N.: Measures of Noncompactness and Condensing Operators. Birkhäuser Verlag, Basel, Boston, Berlin, 1992. | MR
[7] Appell, J.: Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator. J. Math. Anal. Appl. 83 (1981), 251–263. | DOI | MR | Zbl
[8] Baleanu, D., Güvenç, Z. B., Machado, J. A. T.: New Trends in Nanotechnologiy and Fractional Calculus Applications. Springer, New York, 2010. | MR
[9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. | MR
[10] Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity. Comment. Math. 41 (2001), 13–23. | MR | Zbl
[11] Benchohra, M., Bouriah, S.: Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order.
[12] Benchohra, M., Bouriah, S., Henderson, J.: Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses. Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. | MR | Zbl
[13] Butzer, P. L., Kilbas, A. A., Trujillo, J. J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400. | DOI | MR | Zbl
[14] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | DOI | MR | Zbl
[15] Guo, D. J., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht, 1996. | MR | Zbl
[16] Hadamard, J.: Essai sur l’étude des fonctions données par leur developpement de Taylor. J. Math. Pure Appl. Ser. 8 (1892), 101–186.
[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl
[18] Kilbas, A. A., Trujillo, J. J.: Hadamard-type integrals as G-transforms. Integral Transform. Spec. Funct. 14 (2003), 413–427. | DOI | MR | Zbl
[19] Lin, S.: Generalised Gronwall inequalities and their applications to fractional differential equations. J. Ineq. Appl. 2013, 549 (2013), 1–9. | MR
[20] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999. | DOI | MR
[21] Nieto, J. J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville–Caputo derivative. Mathematics 3, 2 (2015), 398–411. | DOI | Zbl
[22] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl
[23] Sun, S., Zhao, Y., Han, Z., Li, Y.: The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967. | DOI | MR | Zbl
[24] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media. Springer & Higher Education Press, Heidelberg & Beijing, 2010. | MR
[25] Yosida, K.: Functional Analysis. 6th edn., Springer-Verlag, Berlin, 1980. | MR | Zbl
[26] Zhao, Y., Sun, S., Han, Z., Li, Q.: Theory of fractional hybrid differential equations. Comput. Math. Appl. 62 (2011), 1312–1324. | DOI | MR | Zbl