Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 15-26 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.
In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.
Classification : 26A33, 34A08
Keywords: Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point
@article{AUPO_2016_55_1_a2,
     author = {Benchohra, Mouffak and Bouriah, Soufyane and Lazreg, Jamal E. and Nieto, Juan J.},
     title = {Nonlinear {Implicit} {Hadamard{\textquoteright}s} {Fractional} {Differential} {Equationswith} {Delay} in {Banach} {Space}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {15--26},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674595},
     zbl = {1362.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Bouriah, Soufyane
AU  - Lazreg, Jamal E.
AU  - Nieto, Juan J.
TI  - Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 15
EP  - 26
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/
LA  - en
ID  - AUPO_2016_55_1_a2
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Bouriah, Soufyane
%A Lazreg, Jamal E.
%A Nieto, Juan J.
%T Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 15-26
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/
%G en
%F AUPO_2016_55_1_a2
Benchohra, Mouffak; Bouriah, Soufyane; Lazreg, Jamal E.; Nieto, Juan J. Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a2/

[1] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Springer-Verlag, New York, 2012. | MR | Zbl

[2] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl

[3] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. | DOI | MR | Zbl

[4] Ahmad, B., Ntouyas, S. K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17 (2014), 348–360. | DOI | MR | Zbl

[5] Ahmad, B., Ntouyas, S. K.: Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differential Equations 2015, 77 (2015), 1–9. | MR | Zbl

[6] Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N.: Measures of Noncompactness and Condensing Operators. Birkhäuser Verlag, Basel, Boston, Berlin, 1992. | MR

[7] Appell, J.: Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator. J. Math. Anal. Appl. 83 (1981), 251–263. | DOI | MR | Zbl

[8] Baleanu, D., Güvenç, Z. B., Machado, J. A. T.: New Trends in Nanotechnologiy and Fractional Calculus Applications. Springer, New York, 2010. | MR

[9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. | MR

[10] Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity. Comment. Math. 41 (2001), 13–23. | MR | Zbl

[11] Benchohra, M., Bouriah, S.: Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order.

[12] Benchohra, M., Bouriah, S., Henderson, J.: Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses. Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. | MR | Zbl

[13] Butzer, P. L., Kilbas, A. A., Trujillo, J. J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400. | DOI | MR | Zbl

[14] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | DOI | MR | Zbl

[15] Guo, D. J., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht, 1996. | MR | Zbl

[16] Hadamard, J.: Essai sur l’étude des fonctions données par leur developpement de Taylor. J. Math. Pure Appl. Ser. 8 (1892), 101–186.

[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[18] Kilbas, A. A., Trujillo, J. J.: Hadamard-type integrals as G-transforms. Integral Transform. Spec. Funct. 14 (2003), 413–427. | DOI | MR | Zbl

[19] Lin, S.: Generalised Gronwall inequalities and their applications to fractional differential equations. J. Ineq. Appl. 2013, 549 (2013), 1–9. | MR

[20] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999. | DOI | MR

[21] Nieto, J. J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville–Caputo derivative. Mathematics 3, 2 (2015), 398–411. | DOI | Zbl

[22] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl

[23] Sun, S., Zhao, Y., Han, Z., Li, Y.: The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967. | DOI | MR | Zbl

[24] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media. Springer & Higher Education Press, Heidelberg & Beijing, 2010. | MR

[25] Yosida, K.: Functional Analysis. 6th edn., Springer-Verlag, Berlin, 1980. | MR | Zbl

[26] Zhao, Y., Sun, S., Han, Z., Li, Q.: Theory of fractional hybrid differential equations. Comput. Math. Appl. 62 (2011), 1312–1324. | DOI | MR | Zbl