On Metrizable Locally Homogeneous Connections in Dimension
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 157-166
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].
We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].
Classification :
53B05, 53B20
Keywords: Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space
Keywords: Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space
@article{AUPO_2016_55_1_a16,
author = {Van\v{z}urov\'a, Alena},
title = {On {Metrizable} {Locally} {Homogeneous} {Connections} in {Dimension}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {157--166},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674609},
zbl = {1372.53016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a16/}
}
TY - JOUR AU - Vanžurová, Alena TI - On Metrizable Locally Homogeneous Connections in Dimension JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 157 EP - 166 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a16/ LA - en ID - AUPO_2016_55_1_a16 ER -
Vanžurová, Alena. On Metrizable Locally Homogeneous Connections in Dimension. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 157-166. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a16/