Keywords: Differentiable manifold; $SL(n, )$-structure; Killing tensors
@article{AUPO_2016_55_1_a13,
author = {Stepanov, Sergey E. and Tsyganok, Irina I. and Khripunova, Marina B.},
title = {The {Killing} {Tensors} on an $n$-dimensional {Manifold} with $SL(n,)$-structure},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {121--131},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674606},
zbl = {1365.53027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/}
}
TY - JOUR AU - Stepanov, Sergey E. AU - Tsyganok, Irina I. AU - Khripunova, Marina B. TI - The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 121 EP - 131 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/ LA - en ID - AUPO_2016_55_1_a13 ER -
%0 Journal Article %A Stepanov, Sergey E. %A Tsyganok, Irina I. %A Khripunova, Marina B. %T The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 121-131 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/ %G en %F AUPO_2016_55_1_a13
Stepanov, Sergey E.; Tsyganok, Irina I.; Khripunova, Marina B. The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/
[1] Chern, S. S.: The geometry of G-structures. Bull. Amer. Math. Soc. 72 (1966), 167–219. | DOI | MR | Zbl
[2] Eisenhart, L. P.: Riemannian geometry. Princeton Univ. Press, Princeton, NJ, 1949. | MR | Zbl
[3] Fulton, C. M.: Parallel vector fields. Proc. Amer. Math. Soc. 16 (1965), 136–137. | DOI | MR | Zbl
[4] Katzin, G. H., Levine, J.: Note on the number of linearly independent $m^{th}$-order first integrals space of constant curvature. Tensor 19, 1 (1968), 42–44. | MR
[5] Kashiwada, T.: On konformal Killing tensor. Natural Science Report, Ochanomizu University 19, 2 (1968), 67–74. | MR
[6] Kobayashi, Sh.: Transformation Groups in Differential Geometry. Erbeb. Math. Grenzgeb 70, Springer-Verlag, New York–Heidelberg, 1972. | MR | Zbl
[7] Kobayashi, Sh., Nomizu, K.: Foundations of differential geometry. Vol. 1. Intersience, New York–London, 1963. | MR
[8] Krame, D., Stephani, H., MacCallum, M. A. H., Herit, E.: Exact solutions of Einstein’s field equations. Cambridge Univ. Press, Cambridge, 1980. | MR
[9] Mikeš, J.: Geodesic mapping of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR
[10] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings. Palacký University, Olomouc, 2015. | MR | Zbl
[11] Nijenhuis, A.: A note on first integrals of geodesics. Proc. Kon. Ned. Acad. Van. Wetens., Ser. A 52 (1967), 141–145. | MR | Zbl
[12] Nomizu, K.: What is affine differential geometry. ? In: Differential Geometry Meeting, Univ. Munster, 1982, 42–43.
[13] Nomizu, K.: On completeness in affine differential geometry. Geometriae Dedicata 20, 1 (1986), 43–49. | DOI | MR | Zbl
[14] Schouten, J. A.: Ricci-calculus. Grundlehren Math. Wiss., 10, Springer-Verlag, Berlin, 1954. | MR | Zbl
[15] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie. Teubner, Leipzig, 1962. | MR | Zbl
[16] Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine Differential Geometry of Hypersurfaces. Science University of Tokyo, Tokyo, 1991. | MR
[17] Stepanov, S. E.: The Killing-Yano tensor. Theoretical and Mathematical Physics 134, 3 (2003), 333–338. | DOI | MR | Zbl
[18] Stepanov, S. E.: The Bochner technique for an $m$-dimensional compact manifold with $SL(m,)$-structure. St. Petersburg Mathematical Journal 10, 4 (1999), 703–714. | MR
[19] Stepanov, S. E.: On conformal Killing 2-form of the electromagnetic field. J. Geom. Phys. 33 (2000), 191–209. | DOI | MR | Zbl
[20] Stepanov, S. E.: A class of closed forms and special Maxwell’s equations. Tensor, N.S. 58 (1997), 233–242. | MR | Zbl
[21] Stepanov, S. E.: The vector space of conformal Killing forms on a Riemannian manifold. J. Math. Sci. 110, 4 (2002), 2892–2906. | DOI | MR
[22] Stepanov, S. E., Jukl, M., Mikeš, J.: On dimensions of vector spaces of conformal Killing forms. In: Springer Proceedings in Mathematics & Statistics 85, (Algebra, geometry and mathematical physics. AGMP, Mulhouse, France, October 24–26, 2011), Springer, Berlin, 2014, 495–507. | MR | Zbl
[23] Stepanov, S. E., Smol’nikova, M. V.: Fundamental differential operators of orders one on exterior and symmetric forms. Russ. Math. J. 46, 11 (2002), 51–56. | MR
[24] Stepanov, S. E., Tsyganok, I. I.: Vector fields in a manifolds with equiaffine connections. In: Webs and Quasigroups, Tver Univ. Press, Tver, 1993, 70–77. | MR
[25] Tachibana, S.-I.: On conformal Killing tensor in a Riemannian space. Tohoku Math. Journal 21, 1 (1969), 56–64. | DOI | MR | Zbl
[26] Yano, K., Ishihara, Sh.: Harmonic and relative affine mappings. J. Differential Geometry 10 (1975), 501–509. | DOI | MR
[27] Yano, K., Nagano, T.: Some theorems on projective and conformal transformations. Ind. Math. 14 (1957), 451–458. | DOI | MR | Zbl