The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 121-131 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an $n$-dimensional differentiable manifold $M$ endowed with an equiaffine $SL(n,)$-structure and discuss possible applications of obtained results in Riemannian geometry.
In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an $n$-dimensional differentiable manifold $M$ endowed with an equiaffine $SL(n,)$-structure and discuss possible applications of obtained results in Riemannian geometry.
Classification : 53A15, 53A45
Keywords: Differentiable manifold; $SL(n, )$-structure; Killing tensors
@article{AUPO_2016_55_1_a13,
     author = {Stepanov, Sergey E. and Tsyganok, Irina I. and Khripunova, Marina B.},
     title = {The {Killing} {Tensors} on an $n$-dimensional {Manifold} with $SL(n,)$-structure},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {121--131},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674606},
     zbl = {1365.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/}
}
TY  - JOUR
AU  - Stepanov, Sergey E.
AU  - Tsyganok, Irina I.
AU  - Khripunova, Marina B.
TI  - The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 121
EP  - 131
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/
LA  - en
ID  - AUPO_2016_55_1_a13
ER  - 
%0 Journal Article
%A Stepanov, Sergey E.
%A Tsyganok, Irina I.
%A Khripunova, Marina B.
%T The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 121-131
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/
%G en
%F AUPO_2016_55_1_a13
Stepanov, Sergey E.; Tsyganok, Irina I.; Khripunova, Marina B. The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a13/

[1] Chern, S. S.: The geometry of G-structures. Bull. Amer. Math. Soc. 72 (1966), 167–219. | DOI | MR | Zbl

[2] Eisenhart, L. P.: Riemannian geometry. Princeton Univ. Press, Princeton, NJ, 1949. | MR | Zbl

[3] Fulton, C. M.: Parallel vector fields. Proc. Amer. Math. Soc. 16 (1965), 136–137. | DOI | MR | Zbl

[4] Katzin, G. H., Levine, J.: Note on the number of linearly independent $m^{th}$-order first integrals space of constant curvature. Tensor 19, 1 (1968), 42–44. | MR

[5] Kashiwada, T.: On konformal Killing tensor. Natural Science Report, Ochanomizu University 19, 2 (1968), 67–74. | MR

[6] Kobayashi, Sh.: Transformation Groups in Differential Geometry. Erbeb. Math. Grenzgeb 70, Springer-Verlag, New York–Heidelberg, 1972. | MR | Zbl

[7] Kobayashi, Sh., Nomizu, K.: Foundations of differential geometry. Vol. 1. Intersience, New York–London, 1963. | MR

[8] Krame, D., Stephani, H., MacCallum, M. A. H., Herit, E.: Exact solutions of Einstein’s field equations. Cambridge Univ. Press, Cambridge, 1980. | MR

[9] Mikeš, J.: Geodesic mapping of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[10] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings. Palacký University, Olomouc, 2015. | MR | Zbl

[11] Nijenhuis, A.: A note on first integrals of geodesics. Proc. Kon. Ned. Acad. Van. Wetens., Ser. A 52 (1967), 141–145. | MR | Zbl

[12] Nomizu, K.: What is affine differential geometry. ? In: Differential Geometry Meeting, Univ. Munster, 1982, 42–43.

[13] Nomizu, K.: On completeness in affine differential geometry. Geometriae Dedicata 20, 1 (1986), 43–49. | DOI | MR | Zbl

[14] Schouten, J. A.: Ricci-calculus. Grundlehren Math. Wiss., 10, Springer-Verlag, Berlin, 1954. | MR | Zbl

[15] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie. Teubner, Leipzig, 1962. | MR | Zbl

[16] Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine Differential Geometry of Hypersurfaces. Science University of Tokyo, Tokyo, 1991. | MR

[17] Stepanov, S. E.: The Killing-Yano tensor. Theoretical and Mathematical Physics 134, 3 (2003), 333–338. | DOI | MR | Zbl

[18] Stepanov, S. E.: The Bochner technique for an $m$-dimensional compact manifold with $SL(m,)$-structure. St. Petersburg Mathematical Journal 10, 4 (1999), 703–714. | MR

[19] Stepanov, S. E.: On conformal Killing 2-form of the electromagnetic field. J. Geom. Phys. 33 (2000), 191–209. | DOI | MR | Zbl

[20] Stepanov, S. E.: A class of closed forms and special Maxwell’s equations. Tensor, N.S. 58 (1997), 233–242. | MR | Zbl

[21] Stepanov, S. E.: The vector space of conformal Killing forms on a Riemannian manifold. J. Math. Sci. 110, 4 (2002), 2892–2906. | DOI | MR

[22] Stepanov, S. E., Jukl, M., Mikeš, J.: On dimensions of vector spaces of conformal Killing forms. In: Springer Proceedings in Mathematics & Statistics 85, (Algebra, geometry and mathematical physics. AGMP, Mulhouse, France, October 24–26, 2011), Springer, Berlin, 2014, 495–507. | MR | Zbl

[23] Stepanov, S. E., Smol’nikova, M. V.: Fundamental differential operators of orders one on exterior and symmetric forms. Russ. Math. J. 46, 11 (2002), 51–56. | MR

[24] Stepanov, S. E., Tsyganok, I. I.: Vector fields in a manifolds with equiaffine connections. In: Webs and Quasigroups, Tver Univ. Press, Tver, 1993, 70–77. | MR

[25] Tachibana, S.-I.: On conformal Killing tensor in a Riemannian space. Tohoku Math. Journal 21, 1 (1969), 56–64. | DOI | MR | Zbl

[26] Yano, K., Ishihara, Sh.: Harmonic and relative affine mappings. J. Differential Geometry 10 (1975), 501–509. | DOI | MR

[27] Yano, K., Nagano, T.: Some theorems on projective and conformal transformations. Ind. Math. 14 (1957), 451–458. | DOI | MR | Zbl