Automorphisms of Spacetime Manifold with Torsion
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 87-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove that the maximum dimension of the Lie group of automorphisms of the Riemann–Cartan 4-dimensional manifold does not exceed 8, and if the Cartan connection is skew-symmetric or semisymmetric, the maximum dimension is equal to 7. In addition, in the case of the Riemann–Cartan $n$-dimensional manifolds with semisymmetric connection the maximum dimension of the Lie group of automorphisms is equal to $n(n-1)/2+1$ for any $n>2$.
In this paper we prove that the maximum dimension of the Lie group of automorphisms of the Riemann–Cartan 4-dimensional manifold does not exceed 8, and if the Cartan connection is skew-symmetric or semisymmetric, the maximum dimension is equal to 7. In addition, in the case of the Riemann–Cartan $n$-dimensional manifolds with semisymmetric connection the maximum dimension of the Lie group of automorphisms is equal to $n(n-1)/2+1$ for any $n>2$.
Classification : 53C05, 53C25
Keywords: Riemann–Cartan manifolds; automorphisms; semi-symmetric connection
@article{AUPO_2016_55_1_a10,
     author = {Pan{\textquoteright}Zhenskii, Vladimir Ivanovich and Surina, Olga Petrovna},
     title = {Automorphisms of {Spacetime} {Manifold} with {Torsion}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {87--94},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674603},
     zbl = {1365.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a10/}
}
TY  - JOUR
AU  - Pan’Zhenskii, Vladimir Ivanovich
AU  - Surina, Olga Petrovna
TI  - Automorphisms of Spacetime Manifold with Torsion
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 87
EP  - 94
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a10/
LA  - en
ID  - AUPO_2016_55_1_a10
ER  - 
%0 Journal Article
%A Pan’Zhenskii, Vladimir Ivanovich
%A Surina, Olga Petrovna
%T Automorphisms of Spacetime Manifold with Torsion
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 87-94
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a10/
%G en
%F AUPO_2016_55_1_a10
Pan’Zhenskii, Vladimir Ivanovich; Surina, Olga Petrovna. Automorphisms of Spacetime Manifold with Torsion. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a10/

[1] Gordeeva, I. A., Pan’zhenskii, V. I., Stepanov, S. E.: Riemann–Cartan manifolds. In: Modern Mathematics and Its Applications 123 Geometry, VINITI, Moscow, 2009, 110–141, (in Russian). | MR

[2] Tamm, I. E.: On the curved momentum space. In: Selected Papers 4, Springer-Verlag, Berlin, Heidelberg, 1991, 197–210; Selected Scientific Papers 2, Nauka, Moscow, 1975, 218–225.

[3] Tamm, I. E., Vologodskii, V. G.: On the use of curved momentum space in the construction of nonlocal Euclidean field theory. In: Collection of Scientific Papers 2, Nauka, Moscow, 1975, 226–253, (in Russian). Princeton Univ. Press, Princetton, NJ, 1953; Inostrannaya Literatura, Moscow, 1957.

[4] Pan’zhenskii, V. I.: Maximally movable Riemannian spaces with torsion. Math. Notes 85, 5-6 (2010), 720–723; Mat. Zametki 85, 5 (2009), 754–757. | MR

[5] Pan’zhenskii, V. I.: Automorphisms of the Riemann–Cartan space-time manifold. Tr. Mezhdunar. Geom. Tsentra 5, 2 (2012), 27–34.

[6] Pan’zhenskii, V. I.: Automorphisms of Riemann-Cartan Manifolds with Semi-Symmetric Connection. Journal of Mathematical Physics, Analysis, Geometry 10, 2 (2014), 233–239. | MR

[7] Pan’zhenskii, V. I.: Automorphisms of Riemann–Cartan Manifolds. Math. Notes 98, 4 (2015), 613–623. | DOI | MR | Zbl

[8] Yano, K., Bochner, S.: Curvature and Betti Numbers. Princeton Univ. Press, Princetton, NJ, 1953; Inostrannaya Literatura, Moscow, 1957. | MR | Zbl

[9] Stepanov, S. E., Gordeeva, I. A.: Pseudo-Killing and pseudoharmonic vector Fields on a Riemann–Cartan manifold. Math. Notes 87, 1-2 (2010), 248–257; Mat. Zametki 87, 2 (2010), 267–279. | DOI | MR | Zbl