On the Example of Almost Pseudo-Z-symmetric Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 5-10 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.
In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.
Classification : 53B20, 53B30, 53C21
Keywords: (pseudo-) Riemannian manifold; almost pseudo-Z-symmetric spaces; equidistant spaces
@article{AUPO_2016_55_1_a0,
     author = {Baishya, Kanak Kanti and Pe\v{s}ka, Patrik},
     title = {On the {Example} of {Almost} {Pseudo-Z-symmetric} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--10},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674593},
     zbl = {1365.53021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a0/}
}
TY  - JOUR
AU  - Baishya, Kanak Kanti
AU  - Peška, Patrik
TI  - On the Example of Almost Pseudo-Z-symmetric Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 5
EP  - 10
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a0/
LA  - en
ID  - AUPO_2016_55_1_a0
ER  - 
%0 Journal Article
%A Baishya, Kanak Kanti
%A Peška, Patrik
%T On the Example of Almost Pseudo-Z-symmetric Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 5-10
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a0/
%G en
%F AUPO_2016_55_1_a0
Baishya, Kanak Kanti; Peška, Patrik. On the Example of Almost Pseudo-Z-symmetric Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a0/

[1] Brinkmann, H. W.: Einstein spaces which mapped conformally on each other. Math. Ann. 94 (1925). | DOI | MR

[2] Cartan, É.: Les espaces riemanniens symétriques. Verhandlungen Kongress Zürich 1 (1932), 152–161. | Zbl

[3] Chepurna, O., Hinterleitner, I.: On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings. Miskolc Math. Notes 14, 2 (2013), 561–568. | MR | Zbl

[4] De, U. C., Pal, P.: On almost pseudo-Z-symmetric manifolds. Acta Univ. Palack. Olomuc., Fac. Rer. Nat., Math. 53, 1 (2014), 25–43. | MR | Zbl

[5] Dey, S. K., Baishya, K. K.: On the existence of some types of Kenmotsu manifolds. Univers. J. Math. Math. Sci. 6, 1 (2014), 13–32. | MR | Zbl

[6] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125–133, In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Bratislava, 2009, 423–430.

[7] Kaigorodov, V. R.: Structure of space-time curvature. J. Sov. Math. 28 (1985), 256–273. | DOI | Zbl

[8] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ. 3924-76, Moscow, 1976.

[9] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622–624, Transl. from: Mat. Zametki 28 (1980), 313–317. | DOI | MR

[10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62.

[11] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (New York) 78, 3 (1996), 311–333, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 11 (2002), 121–162. | DOI | MR

[12] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89, 3 (1998), 1334–1353, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 (2002), 258–289. | DOI | MR

[13] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings. Palacký University, Olomouc, 2015. | MR | Zbl

[14] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric spaces with affine connection. In: Investigations in topological and generalized spaces, Kirgiz. Gos. Univ., Frunze, 1988, 58–63, (in Russian). | MR

[15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009. | MR | Zbl

[16] Shaikh, A. A., Baishya, K. K., Eyasmin, S.: On $\varphi $-recurrent generalized $(k,\mu )$-contact metric manifolds. Lobachevskii J. Math. 27, 3-13 (2007), electronic only. | MR

[17] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. | MR | Zbl

[18] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. In: Publ. Comp. Colloq. Math. Soc. János Bolyai 56, North-Holland Publ., Amsterdam, 1992, 663–670. | MR | Zbl

[19] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36–64. | DOI | MR | Zbl

[20] Yano, K.: Concircular geometry. Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511. | DOI | Zbl

[21] Yılmaz, H. B.: On decomposable almost pseudo conharmonically symmetric manifolds. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51, 1 (2012), 111–124. | MR | Zbl