Approximation Spacesin Non-commutative Generalizations of $MV$-algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 83-92 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.
Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.
Classification : 06D35
Keywords: MV-algebra; GMV-algebra; rough set; approximation space; normal ideal; congruence
@article{AUPO_2015_54_2_a5,
     author = {RACH\r{U}NEK, Ji\v{r}{\'\i} and \v{S}ALOUNOV\'A, Dana},
     title = {Approximation {Spacesin} {Non-commutative} {Generalizations} of $MV$-algebras},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {83--92},
     year = {2015},
     volume = {54},
     number = {2},
     mrnumber = {3469693},
     zbl = {1347.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a5/}
}
TY  - JOUR
AU  - RACHŮNEK, Jiří
AU  - ŠALOUNOVÁ, Dana
TI  - Approximation Spacesin Non-commutative Generalizations of $MV$-algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 83
EP  - 92
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a5/
LA  - en
ID  - AUPO_2015_54_2_a5
ER  - 
%0 Journal Article
%A RACHŮNEK, Jiří
%A ŠALOUNOVÁ, Dana
%T Approximation Spacesin Non-commutative Generalizations of $MV$-algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 83-92
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a5/
%G en
%F AUPO_2015_54_2_a5
RACHŮNEK, Jiří; ŠALOUNOVÁ, Dana. Approximation Spacesin Non-commutative Generalizations of $MV$-algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 83-92. http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a5/

[1] Biswas, R., Nanda, S.: Rough groups and rough subgroups. Bull. Polish Acad. Sci., Math. 42 (1994), 251–254. | MR | Zbl

[2] Burris, S., Sankapanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1981. | MR

[3] Cataneo, G., Ciucci, D.: Algebraic structures for rough sets. Lect. Notes Comput. Sci. 3135 (2004), 208–252. | DOI

[4] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundation of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, Boston, London, 2000. | MR

[5] Ciucci, D.: On the axioms of residuated structures independence dependencies and rough approximations. Fundam. Inform. 69 (2006), 359–387. | MR | Zbl

[6] Ciucci, D.: A unifying abstract approach for rough models. In: C., Wang, et al: RSKT 2008, 5009, Springer-Verlag, Heidelberg, 2008, 371–378.

[7] Davvaz, B.: Roughness in rings. Inform. Sci. 164 (2004), 147–163. | DOI | MR | Zbl

[8] Davvaz, B.: Roughness based on fuzzy ideals. Inform. Sci. 176 (2006), 2417–2437. | DOI | MR | Zbl

[9] Estaji, A. A., Khodaii, S., Bahrami, S.: On rough set and fuzzy sublattice. Inform. Sci. 181 (2011), 3981–3994. | DOI | MR | Zbl

[10] Georgescu, G., Iorgulescu, A.: Pseudo MV-algebras. Multi. Val. Logic 6 (2001), 95–135. | MR | Zbl

[11] Kondo, M., M.: Algebraic approach to generalized rough sets. In: D., Slezak, et al: RSFDGrC 2005, LNAI, 5009, Springer-Verlag, Berlin, Heidelberg, 2005, 132–140. | MR | Zbl

[12] Kuroki, N.: Rough ideals in semigroups. Inform. Sci. 100 (1997), 139–163. | DOI | MR | Zbl

[13] Leoreanu-Fotea, V., Davvaz, B.: Roughness in n-ary hypergroups. Inform. Sci. 178 (2008), 4114–4124. | DOI | MR | Zbl

[14] Leuştean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Logic 45 (2006), 191–213. | DOI | MR | Zbl

[15] Li, T. J., Leung, Y., Zhang, W. X.: Generalized fuzzy rough approximation operators based on fuzzy coverings. Int. J. Approx. Reason. 48 (2008), 836–856. | DOI | MR | Zbl

[16] Li, X., Liu, S.: Matroidal approaches to rough sets via closure operators. Inter. J. Approx. Reason. 53 (2012), 513–527. | MR | Zbl

[17] Liu, G. L., Zhu, W.: The algebraic structures of generalized rough set theory. Inform. Sci. 178 (2008), 4105–4113. | DOI | MR | Zbl

[18] Pawlak, Z.: Rough sets. Inter. J. Inf. Comput. Sci. 11 (1982), 341–356. | MR | Zbl

[19] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving 9, Kluwer Academic Publ., Dordrecht, 1991. | Zbl

[20] Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inform. Sci. 177 (2007), 3–27. | DOI | MR | Zbl

[21] Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inform. Sci. 177 (2007), 28–40. | DOI | MR | Zbl

[22] Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inform. Sci. 177 (2007), 41–73. | DOI | MR | Zbl

[23] Pei, D.: On definable concepts of rough set models. Inform. Sci. 177 (2007), 4230–4239. | DOI | MR | Zbl

[24] Rachůnek, J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR | Zbl

[25] Radzikowska, A. M., Kerre, E. E.: Fuzzy rough sets based on residuated lattices. In: Transactions on Rough Sets II, Lecture Notes in Computer Sciences, 3135, Springer-Verlag, Berlin, Heidelberg, 2004, 278–296. | Zbl

[26] Rasouli, S., Davvaz, B.: Roughness in MV-algebras. Inform. Sci. 180 (2010), 737–747. | DOI | MR | Zbl

[27] She, Y. H., Wang, G. J.: An approximatic approach of fuzzy rough sets based on residuated lattices. Comput. Math. Appl. 58 (2009), 189–201. | DOI | MR

[28] Xiao, Q. M., Zhang, Z. L.: Rough prime ideals and rough fuzzy prime ideals in semigroups. Inform. Sci. 176 (2006), 725–733. | DOI | MR | Zbl

[29] Yang, L., Xu, L.: Algebraic aspects of generalized approximation spaces. Int. J. Approx. Reason. 51 (2009), 151–161. | DOI | MR | Zbl

[30] Zhu, P.: Covering rough sets based on neighborhoods: An approach without using neighborhoods. Int. J. Approx. Reason. 52 (2011), 461–472. | DOI | MR | Zbl

[31] Zhu, W.: Relationship between generalized rough set based on binary relation and covering. Inform. Sci. 179 (2009), 210–225. | DOI | MR