Some Applications of new Modified q-Szász–Mirakyan Operators
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 71-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.
This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.
Classification : 41A25, 41A35
Keywords: q-analogue Baskakov operators; q-Durrmeyer operators; rate of convergence; weighted approximation
@article{AUPO_2015_54_2_a4,
     author = {PATHAK, Ramesh P. and SAHOO, Shiv Kumar},
     title = {Some {Applications} of new {Modified} {q-Sz\'asz{\textendash}Mirakyan} {Operators}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {71--82},
     year = {2015},
     volume = {54},
     number = {2},
     mrnumber = {3469692},
     zbl = {1347.41023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a4/}
}
TY  - JOUR
AU  - PATHAK, Ramesh P.
AU  - SAHOO, Shiv Kumar
TI  - Some Applications of new Modified q-Szász–Mirakyan Operators
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 71
EP  - 82
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a4/
LA  - en
ID  - AUPO_2015_54_2_a4
ER  - 
%0 Journal Article
%A PATHAK, Ramesh P.
%A SAHOO, Shiv Kumar
%T Some Applications of new Modified q-Szász–Mirakyan Operators
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 71-82
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a4/
%G en
%F AUPO_2015_54_2_a4
PATHAK, Ramesh P.; SAHOO, Shiv Kumar. Some Applications of new Modified q-Szász–Mirakyan Operators. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 71-82. http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a4/

[1] Aral, A., Gupta, V.: Generalized q-Baskakov operators. Math. Slovaca 61, 4 (2011), 619–634. | DOI | MR | Zbl

[2] Aral, A., Gupta, V.: On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. 72 (2010), 1171–1180. | DOI | MR | Zbl

[3] Kasana, H. S., Prasad, G., Agrawal, P. N., Sahai, A.: Modified Szász operators. In: Proc. of Int. Con. on Math. Anal. and its Appl. Pergamon Press (1985), 29–41. | MR

[4] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators. Mathematical Sciences 6, 1:24 (2012), 1–6. | DOI | MR | Zbl

[5] Sharma, H., Aujla, S. J.: A certain family of mixed summation-integral-type Lupas–Phillips–Bernstein operators. Math. Sci. 6, 1:26 (2012), 1–9. | DOI | MR | Zbl

[6] Burgin, M., Duman, O.: Approximations by linear operators in spaces of fuzzy continuous functions. Positivity 15 (2011), 57–72. | DOI | MR | Zbl

[7] Orkcu, M., Dorgu, O.: Statistical approximation of a kind of Kantorovich type q-Szász–Mirakjan operators. Nonlinear Anal. 75, 5 (2012), 2874–2882. | DOI | MR

[8] Deo, N.: Faster rate of convergence on Srivastava-Gupta operators. Appl. Math. Compute. 218 (2012), 10486–10491. | DOI | MR | Zbl

[9] Deo, N., Noor, M. A., Siddiqui, M. A.: On approximation by class of new Bernstein type operators. Appl. Math. Compute. 201 (2008), 604–612. | DOI | MR

[10] Deo, N., Bhardwaj, N., Singh, S. P.: Simultaneous approximation on generalized Bernstein–Durrmeyer operators. Afr. Mat. 24, 1 (2013), 77–82. | DOI | MR | Zbl

[11] Duman, O., Orhan, C.: Statistical approximation by positive linear operators. Studia Math. 161 (2006), 187–197. | DOI | MR

[12] Dorgu, O., Duman, O.: Statistical approximation of Meyer–König and Zeller operators based on q-integers. Publ. Math. Debrecen 68 (2006), 199–214. | MR

[13] Sahoo, S. K., Singh, S. P.: Some approximation results on a special class of positive linear operators. Proc. Math. Soc., B. H. University 24, 4 (2008), 1–9.

[14] Acar, T., Aral, A., Gupta, V.: Rate of convergence for generalized Szász operators. Bull. Math. Sci. 1 (2011), 99–113. | DOI | MR | Zbl

[15] Basakov, V. A.: An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. 131 (1973), 249–251.