Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 21-40 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.
The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.
Classification : 53C15, 53C25
Keywords: Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; generalized recurrent manifold; generalized Ricci-recurrent manifold; weakly symmetric manifold; weakly Ricci-symmetric manifold; semi-generalized recurrent manifold; Einstein manifold
@article{AUPO_2015_54_2_a1,
     author = {DEY, Santu and BHATTACHARYYA, Arindam},
     title = {Some {Properties} of {Lorentzian} $\alpha ${-Sasakian} {Manifolds} with {Respect} to {Quarter-symmetric} {Metric} {Connection}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {21--40},
     year = {2015},
     volume = {54},
     number = {2},
     mrnumber = {3469689},
     zbl = {1346.53032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a1/}
}
TY  - JOUR
AU  - DEY, Santu
AU  - BHATTACHARYYA, Arindam
TI  - Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 21
EP  - 40
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a1/
LA  - en
ID  - AUPO_2015_54_2_a1
ER  - 
%0 Journal Article
%A DEY, Santu
%A BHATTACHARYYA, Arindam
%T Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 21-40
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a1/
%G en
%F AUPO_2015_54_2_a1
DEY, Santu; BHATTACHARYYA, Arindam. Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 21-40. http://geodesic.mathdoc.fr/item/AUPO_2015_54_2_a1/

[1] Chaki, M. C.: On pseudo symmetric manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, 1 (1987), 53–58. | MR | Zbl

[2] Chaki, M. C.: On pseudo Ricci symmetric manifolds. Bulgar. J. Phys. 15, 6 (1988), 526–531. | MR | Zbl

[3] Chaki, M. C.: Some theorems on recurrent and Ricci-recurrent spaces. Rend. Sem. Math. Delta Univ. Padova 26 (1956), 168–176. | MR | Zbl

[4] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97, 1 (2003), 7–22. | DOI | MR | Zbl

[5] Friedmann, A., Schouten, J. A.: Uber die Geometrie der halbsymmetrischen Uber-tragung. Math. Zeitschr. 21 (1924), 211–223. | DOI | MR

[6] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor, N.S. 29 (1975), 249–254. | MR | Zbl

[7] Hayden, H. A.: Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1932), 27–50. | MR

[8] Mishra, R. S., Pandey, S. N.: On quarter-symmetric metric F-connection. Tensor, N.S. 34 (1980), 1–7. | MR

[9] Mikeš, J.: Geodesic Ricci mappings of two-symmetric Riemann spaces. Math. Notes 28 (1981), 622–624. | DOI | Zbl

[10] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[11] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009. | MR | Zbl

[12] Mikeš et al., J.: Differential geometry of special mappings. Palacky University, Olomouc, 2015. | MR | Zbl

[13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Topics in differential geometry, Vol. II, Colloq. Math. Soc. János Bolyai, Debrecen 46 (1984), North-Holland, Amsterdam. | MR

[14] Mikeš, J., Rachůnek, L.: Torse-forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Differential Geometry. Proc. Colloq. Diff. Geometry, Univ. Debrecen, Inst. Math. and Inf., Debrecen, 2001, 219–229. | MR | Zbl

[15] Mikeš, J., Rachůnek, L.: T-semisymmetric spaces and concircular vector fields. Rend. Circ. Mat. Palermo, II. Suppl. 69 (2002), 187–193. | MR | Zbl

[16] Mukhopadhyay, S., Roy, A. K., Barua, B.: Some properties of a quartersymmetric metric connection on a Riemannian manifold. Soochow J. Math. 17 (1991), 205–211. | MR

[17] Patterson, K. M.: Some theorem on Ricci-recurrent spaces. London Math. Soc. 27 (1952), 287–295. | DOI | MR

[18] Prakash, N.: A note on Ricci-recurrent and recurrent spaces. Bulletin of the Calcutta Mathematical Society 54 (1962), 1–7. | MR

[19] Prasad, B.: On semi-generalized recurrent manifold. Mathematica Balkanica, New series 14 (2000), 77–82. | MR | Zbl

[20] Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S.: On pseudosymmetric Lorentzian $\alpha $-Sasakian manifolds. IJPAM 48, 1 (2008), 57–65. | MR

[21] Khan, Q.: On generalized recurrent Sasakian manifolds. Kyungpook Math. J. 44 (2004), 167–172. | MR | Zbl

[22] Rastogi, S. C.: On quarter-symmetric connection. C. R. Acad. Sci. Bulgar 31 (1978), 811–814. | MR

[23] Rastogi, S. C.: On quarter-symmetric metric connection. Tensor 44 (1987), 133–141. | MR

[24] Ruse, H. S.: A classification of $K^{*}$-spaces. London Math. Soc. 53 (1951), 212–229. | DOI | MR | Zbl

[25] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 44 (2005), 151–160. | MR | Zbl

[26] Sular, S.: Some properties of a Kenmotsu manifold with a semi symmetric metric connection. Int. Electronic J. Geom. 3 (2010), 24–34. | MR | Zbl

[27] Tamassy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1992), 663–670. | MR | Zbl

[28] Tamassy, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor, N.S. 53 (1993), 140–148. | MR | Zbl

[29] Tripathi, M. M.: On a semi-symmetric metric connection in a Kenmotsu manifold. J. Pure Math. 16 (1999), 67–71. | MR | Zbl

[30] Tripathi, M. M.: A new connection in a Riemannian manifold. Int. Electronic J. Geom. 1 (2008), 15–24. | MR | Zbl

[31] Tripathi, M. M., Nakkar, N.: On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 16, 4 (2001), 323–330. | MR

[32] Yano, K.: On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. | MR

[33] Yano, K., Imai, T.: Quarter-symmetric metric connections and their curvature tensors. Tensor, N.S. 38 (1982), 13–18. | MR | Zbl

[34] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian $\alpha $-Sasakian manifolds. Mathematics and Decision Science 12, 2 (2012), 1–6. | MR

[35] Yamaguchi, S., Matsumoto, M.: On Ricci-recurrent spaces. Tensor, N.S. 19 (1968), 64–68. | MR | Zbl

[36] Yildiz, A., Murathan, C.: On Lorentzian $\alpha $-Sasakian manifolds. Kyungpook Math. J. 45 (2005), 95–103. | MR | Zbl

[37] Yildiz, A., Turan, M., Acet, B. F.: On three dimensional Lorentzian $\alpha $-Sasakian manifolds. Bull. Math. Anal. Appl. 1, 3 (2009), 90–98. | MR | Zbl