Derivations and Translations on Trellises
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 129-136 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an extensive study of derivations and translations on lattices. In this paper, the concepts of meet-translations and derivations have been studied in trellises (also called weakly associative lattices or WA-lattices) and several results in lattices are extended to trellises. The main theorem of this paper, namely, that every derivatrion of a trellis is a meet-translation, is proved without using associativity and it generalizes a well-known result of G. Szász.
G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an extensive study of derivations and translations on lattices. In this paper, the concepts of meet-translations and derivations have been studied in trellises (also called weakly associative lattices or WA-lattices) and several results in lattices are extended to trellises. The main theorem of this paper, namely, that every derivatrion of a trellis is a meet-translation, is proved without using associativity and it generalizes a well-known result of G. Szász.
Classification : 06B05
Keywords: Psoset; trellis; ideal; meet-translation; derivation
@article{AUPO_2015_54_1_a9,
     author = {Rai, Shashirekha B. and Parameshwara Bhatta, S.},
     title = {Derivations and {Translations} on {Trellises}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {129--136},
     year = {2015},
     volume = {54},
     number = {1},
     mrnumber = {3468606},
     zbl = {1350.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a9/}
}
TY  - JOUR
AU  - Rai, Shashirekha B.
AU  - Parameshwara Bhatta, S.
TI  - Derivations and Translations on Trellises
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 129
EP  - 136
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a9/
LA  - en
ID  - AUPO_2015_54_1_a9
ER  - 
%0 Journal Article
%A Rai, Shashirekha B.
%A Parameshwara Bhatta, S.
%T Derivations and Translations on Trellises
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 129-136
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a9/
%G en
%F AUPO_2015_54_1_a9
Rai, Shashirekha B.; Parameshwara Bhatta, S. Derivations and Translations on Trellises. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 129-136. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a9/

[1] Fried, E.: Tournaments and nonassociative lattices. Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 13 (1970), 151–164. | MR

[2] Grätzer, G.: General Lattice Theory. Birkhauser Verlag, Basel, 1978. | MR

[3] Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics, Addison-Wesley, Reading, 1971. | MR

[4] Iseki, K.: On endomorphism with fixed elements on algebra. Proc. Japan Acad. 40, 1964, 403. | MR

[5] Nieminen, J.: Derivations and translations on lattices. Acta Sci. Math. 38 (1976), 359–363. | MR | Zbl

[6] Nieminen, J.: The lattice of translations on a lattice. Acta Sci. Math. 39 (1977), 109–113. | MR | Zbl

[7] Parameshwara Bhatta, S., Shashirekha, H.: A characterization of completeness for trellises. Algebra Universalis 44 (2000), 305–308. | DOI | MR | Zbl

[8] Skala, H. L.: Trellis theory. Algebra Universalis 1 (1971), 218–233. | DOI | MR | Zbl

[9] Skala, H. L.: Trellis Theory. Amer. Math. Soc., Providence, R.I., 1972. | MR | Zbl

[10] Szász, G.: Derivations of lattices. Acta Sci. Math. 36 (1975), 149–154. | MR | Zbl

[11] Szász, G., Szendrei, J.: Über die Translationen der Halbverbände. Acta. Sci. Math. 18 (1957), 44–47. | MR | Zbl