Reticulation of a 0-distributive Lattice
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 121-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $.
A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $.
Classification : 06D99
Keywords: 0-distributive lattice; ideal; prime ideal; congruence relation; prime spectrum; minimal prime spectrum; maximal spectrum
@article{AUPO_2015_54_1_a8,
     author = {Pawar, Y. S.},
     title = {Reticulation of a 0-distributive {Lattice}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {121--128},
     year = {2015},
     volume = {54},
     number = {1},
     mrnumber = {3468605},
     zbl = {1347.06015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a8/}
}
TY  - JOUR
AU  - Pawar, Y. S.
TI  - Reticulation of a 0-distributive Lattice
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 121
EP  - 128
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a8/
LA  - en
ID  - AUPO_2015_54_1_a8
ER  - 
%0 Journal Article
%A Pawar, Y. S.
%T Reticulation of a 0-distributive Lattice
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 121-128
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a8/
%G en
%F AUPO_2015_54_1_a8
Pawar, Y. S. Reticulation of a 0-distributive Lattice. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a8/

[1] Belluce, L. P.: Semisimple Algebras of Infinite Valued Logic and Bold Fuzzy Set Theory. Can. J. Math. 38, 6 (1986), 1356–1379. | DOI | MR | Zbl

[2] Belluce, L. P.: Spectral Spaces and Non-commutative Rings. Comm. Algebra 19 (1991), 1855–1865. | DOI | MR | Zbl

[3] Balasubramani, P.: Stone Topology of The Set of Prime Ideals of a 0-distributive Lattice. Indian J. Pure Appl. Math. 35 (2004), 149–158. | MR

[4] Dan, C. T.: Reticulation in Heyting Algebra. Annals of University of Craiova, Math. Comp. Sci. Ser. 30, 2 (2003), 66–70. | MR

[5] Muresan, C.: The Reticulation of a Residuated Lattice. Bull. Math. Soc. Sci. Math. Roumanie 51 (99), 1 (2008), 47–65. | MR | Zbl

[6] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971. | MR

[7] Kelley, J. L.: General Topology. Van Nostrand, New York, 1969. | MR

[8] Leustean, L.: The Prime and Maximal Spectra and The Reticulation of BL-algebras. Central European Journal of Mathematics 1, 3 (2003), 382–397. | DOI | MR | Zbl

[9] Pawar, Y. S.: 0-1 distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 173–179. | MR | Zbl

[10] Simmons, H.: Reticulated Rings. J. Algebra 66 (1980), 169–192. | DOI | MR | Zbl

[11] Varlet, J.: A generalization of the notion of pseudo-complementedness. Bull. Soc. Liege 37 (1968), 149–158. | MR | Zbl

[12] Varlet, J.: On The Characterizations of Stone Lattices. Acta Sci. Math. (Szeged) 27 (1966), 81–84. | MR