Keywords: Lyapunov functional; third-order vector delay differential equation; boundedness; stability
@article{AUPO_2015_54_1_a7,
author = {Omeike, M. O.},
title = {Stability and {Boundedness} of {Solutions} of a {Certain} {System} of {Third-order} {Nonlinear} {Delay} {Differential} {Equations}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {109--119},
year = {2015},
volume = {54},
number = {1},
mrnumber = {3468604},
zbl = {1351.34086},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a7/}
}
TY - JOUR AU - Omeike, M. O. TI - Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2015 SP - 109 EP - 119 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a7/ LA - en ID - AUPO_2015_54_1_a7 ER -
%0 Journal Article %A Omeike, M. O. %T Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2015 %P 109-119 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a7/ %G en %F AUPO_2015_54_1_a7
Omeike, M. O. Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a7/
[1] Afuwape, A. U.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations. J. Math. Anal. Appl. 97 (1983), 140–150. | DOI | MR
[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. | MR
[3] Afuwape, A. U., Omeike, M. O.: On the stability and boubdedness of solutions of a kind of third order delay differential equations. Applied Mathematics and Computation 200 (2000), 444–451. | DOI | MR
[4] Burton, T. A.: Volterra Integral and Differential Equations. Academic Press, New York, 1983. | MR | Zbl
[5] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando, 1985. | MR | Zbl
[6] Burton, T. A., Zhang, S.: Unified boundedness, periodicity and stability in ordinary and functional differential equations. Ann. Math. Pura Appl. 145 (1986), 129–158. | DOI | MR | Zbl
[7] Ezeilo, J. O. C., Tejumola, H. O.: Boundedness and periodicity of solutions of a certain system of third-order nonlinear differential equations. Ann. Math. Pura Appl. 74 (1966), 283–316. | DOI | MR
[8] Ezeilo, J. O. C.: n-dimensional extensions of boundedness and stability theorems for some third-order differential equations. J. Math. Anal. Appl. 18 (1967), 395–416. | DOI | MR | Zbl
[9] Ezeilo, J. O. C., Tejumola, H. O.: Further results for a system of third-order ordinary differential equations. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151. | MR
[10] Hale, J. K.: Theory of Functional Differential Equations. Springer Verlag, New York, 1977. | MR | Zbl
[11] Sadek, A. I.: Stability and Boundedness of a Kind of Third-Order Delay Differential System. Applied Mathematics Letters 16 (2003), 657–662. | DOI | MR | Zbl
[12] Sadek, A. I.: On the stability of solutions of certain fourth order delay differential equations. Applied Mathematics and Computation 148 (2004), 587–597. | DOI | MR | Zbl
[13] Tiryaki, A.: Boundedness and periodicity results for a certain system of third-order nonlinear differential equations. Indian J. Pure Appl. Math. 30, 4 (1999), 361–372. | MR | Zbl
[14] Zhu, Y.: On stability, boundedness and existence of periodic solution of a kind of third-order nonlinear delay differential system. Ann. of Diff. Eqs. 8, 2 (1992), 249–259. | MR | Zbl
[15] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical Society of Japan, Tokyo, 1996. | MR