Keywords: Linear differential equations; finite order; hyper-order; exponent of convergence of the sequence of distinct zeros; hyper-exponent of convergence of the sequence of distinct zeros
@article{AUPO_2015_54_1_a5,
author = {LATREUCH, Zinel\^aabidine and BELA\"IDI, Benharrat},
title = {Some {Results} on the {Properties} of {Differential} {Polynomials} {Generated} by {Solutionsof} {Complex} {Differential} {Equations}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {81--94},
year = {2015},
volume = {54},
number = {1},
mrnumber = {3468602},
zbl = {1345.30032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/}
}
TY - JOUR AU - LATREUCH, Zinelâabidine AU - BELAÏDI, Benharrat TI - Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2015 SP - 81 EP - 94 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/ LA - en ID - AUPO_2015_54_1_a5 ER -
%0 Journal Article %A LATREUCH, Zinelâabidine %A BELAÏDI, Benharrat %T Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2015 %P 81-94 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/ %G en %F AUPO_2015_54_1_a5
LATREUCH, Zinelâabidine; BELAÏDI, Benharrat. Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/
[1] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesnik 60, 4 (2008), 233–246. | MR | Zbl
[2] Cao, T. B., Chen, Z. X., Zheng, X. M., Tu, J.: On the iterated order of meromorphic solutions of higher order linear differential equations. Ann. Differential Equations 21, 2 (2005), 111–122. | MR
[3] Cao, T. B., Xu, J. F., Chen, Z. X.: On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl. 364, 1 (2010), 130–142. | DOI | MR | Zbl
[4] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis 14, 4 (1994), 425–438. | MR | Zbl
[5] Chen, Z. X.: The fixed points and hyper-order of solutions of second order complex differential equations. Acta Math. Sci. Ser. A, Chin. Ed. 20, 3 (2000), 425–432, (in Chinese). | MR | Zbl
[6] Chen, Z. X., Shon, K. H.: On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients. Acta Math. Sin. (Engl. Ser.) 21, 4 (2005), 753–764. | DOI | MR | Zbl
[7] Hayman, W. K.: Meromorphic Functions. Clarendon Press, Oxford, 1964. | MR | Zbl
[8] Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, New York, 1993. | MR
[9] Laine, I., Rieppo, J.: Differential polynomials generated by linear differential equations. Complex Var. Theory Appl. 49, 12 (2004), 897–911. | DOI | MR | Zbl
[10] Latreuch, Z., Belaïdi, B.: Growth and oscillation of differential polynomials generated by complex differential equations. Electron. J. Differential Equations 2013, 16 (2013), 1–14. | MR | Zbl
[11] Latreuch, Z., Belaïdi, B.: Estimations about the order of growth and the type of meromorphic functions in the complex plane. An. Univ. Oradea, Fasc. Matematica 20, 1 (2013), 179–186. | MR | Zbl
[12] Levin, B. Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. | MR | Zbl
[13] Liu, M. S., Zhang, X. M.: Fixed points of meromorphic solutions of higher order linear differential equations. Ann. Acad. Sci. Fenn. Math. 31, 1 (2006), 191–211. | MR | Zbl
[14] Tu, J., Yi, C. F.: On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order. J. Math. Anal. Appl. 340, 1 (2008), 487–497. | DOI | MR | Zbl
[15] Wang, J., Yi, H. X., Cai, H.: Fixed points of the $l$-th power of differential polynomials generated by solutions of differential equations. J. Syst. Sci. Complex. 17, 2 (2004), 271–280. | MR | Zbl
[16] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications, 557, Kluwer Academic Publishers, Dordrecht, 2003. | MR | Zbl