Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 81-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to considering the complex oscillation of differential polynomials generated by meromorphic solutions of the differential equation \[ f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots +A_1(z) f^{\prime }+A_0(z) f=0, \] where $A_{i}(z)$ $(i=0,1,\cdots ,k-1)$ are meromorphic functions of finite order in the complex plane.
This paper is devoted to considering the complex oscillation of differential polynomials generated by meromorphic solutions of the differential equation \[ f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots +A_1(z) f^{\prime }+A_0(z) f=0, \] where $A_{i}(z)$ $(i=0,1,\cdots ,k-1)$ are meromorphic functions of finite order in the complex plane.
Classification : 30D35, 34M10
Keywords: Linear differential equations; finite order; hyper-order; exponent of convergence of the sequence of distinct zeros; hyper-exponent of convergence of the sequence of distinct zeros
@article{AUPO_2015_54_1_a5,
     author = {LATREUCH, Zinel\^aabidine and BELA\"IDI, Benharrat},
     title = {Some {Results} on the {Properties} of {Differential} {Polynomials} {Generated} by {Solutionsof} {Complex} {Differential} {Equations}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {81--94},
     year = {2015},
     volume = {54},
     number = {1},
     mrnumber = {3468602},
     zbl = {1345.30032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/}
}
TY  - JOUR
AU  - LATREUCH, Zinelâabidine
AU  - BELAÏDI, Benharrat
TI  - Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 81
EP  - 94
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/
LA  - en
ID  - AUPO_2015_54_1_a5
ER  - 
%0 Journal Article
%A LATREUCH, Zinelâabidine
%A BELAÏDI, Benharrat
%T Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 81-94
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/
%G en
%F AUPO_2015_54_1_a5
LATREUCH, Zinelâabidine; BELAÏDI, Benharrat. Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a5/

[1] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesnik 60, 4 (2008), 233–246. | MR | Zbl

[2] Cao, T. B., Chen, Z. X., Zheng, X. M., Tu, J.: On the iterated order of meromorphic solutions of higher order linear differential equations. Ann. Differential Equations 21, 2 (2005), 111–122. | MR

[3] Cao, T. B., Xu, J. F., Chen, Z. X.: On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl. 364, 1 (2010), 130–142. | DOI | MR | Zbl

[4] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis 14, 4 (1994), 425–438. | MR | Zbl

[5] Chen, Z. X.: The fixed points and hyper-order of solutions of second order complex differential equations. Acta Math. Sci. Ser. A, Chin. Ed. 20, 3 (2000), 425–432, (in Chinese). | MR | Zbl

[6] Chen, Z. X., Shon, K. H.: On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients. Acta Math. Sin. (Engl. Ser.) 21, 4 (2005), 753–764. | DOI | MR | Zbl

[7] Hayman, W. K.: Meromorphic Functions. Clarendon Press, Oxford, 1964. | MR | Zbl

[8] Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, New York, 1993. | MR

[9] Laine, I., Rieppo, J.: Differential polynomials generated by linear differential equations. Complex Var. Theory Appl. 49, 12 (2004), 897–911. | DOI | MR | Zbl

[10] Latreuch, Z., Belaïdi, B.: Growth and oscillation of differential polynomials generated by complex differential equations. Electron. J. Differential Equations 2013, 16 (2013), 1–14. | MR | Zbl

[11] Latreuch, Z., Belaïdi, B.: Estimations about the order of growth and the type of meromorphic functions in the complex plane. An. Univ. Oradea, Fasc. Matematica 20, 1 (2013), 179–186. | MR | Zbl

[12] Levin, B. Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. | MR | Zbl

[13] Liu, M. S., Zhang, X. M.: Fixed points of meromorphic solutions of higher order linear differential equations. Ann. Acad. Sci. Fenn. Math. 31, 1 (2006), 191–211. | MR | Zbl

[14] Tu, J., Yi, C. F.: On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order. J. Math. Anal. Appl. 340, 1 (2008), 487–497. | DOI | MR | Zbl

[15] Wang, J., Yi, H. X., Cai, H.: Fixed points of the $l$-th power of differential polynomials generated by solutions of differential equations. J. Syst. Sci. Complex. 17, 2 (2004), 271–280. | MR | Zbl

[16] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications, 557, Kluwer Academic Publishers, Dordrecht, 2003. | MR | Zbl