Keywords: Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
@article{AUPO_2015_54_1_a3,
author = {Boucenna, A. and Moussaoui, T.},
title = {Existence {Results} for a {Fractional} {Boundary} {Value} {Problem} via {Critical} {Point} {Theory}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {47--64},
year = {2015},
volume = {54},
number = {1},
mrnumber = {3468600},
zbl = {1354.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a3/}
}
TY - JOUR AU - Boucenna, A. AU - Moussaoui, T. TI - Existence Results for a Fractional Boundary Value Problem via Critical Point Theory JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2015 SP - 47 EP - 64 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a3/ LA - en ID - AUPO_2015_54_1_a3 ER -
%0 Journal Article %A Boucenna, A. %A Moussaoui, T. %T Existence Results for a Fractional Boundary Value Problem via Critical Point Theory %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2015 %P 47-64 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a3/ %G en %F AUPO_2015_54_1_a3
Boucenna, A.; Moussaoui, T. Existence Results for a Fractional Boundary Value Problem via Critical Point Theory. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/AUPO_2015_54_1_a3/
[1] Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. International Journal of Bifurcation and Chaos 22, 1250086 (2012), 1–17. | DOI | MR | Zbl
[2] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Computers and Mathematics with Applications 62 (2011), 1181–1199. | DOI | MR | Zbl
[3] Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electonic Journal of Differential Equations 136 (2013), 1–12. | MR | Zbl
[4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam, 2006. | MR | Zbl
[5] Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Springer-Verlag, New York, 2011. | MR | Zbl
[6] Friedman, A.: Foundations of Modern Analysis. Dover Publications, New York, 1982. | MR | Zbl
[7] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Newark, NJ, 1993. | MR
[8] Diethlem, K.: The Analysis of Fractional Differential Equations. Springer, New York, 2010. | MR
[9] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. | MR | Zbl
[10] Mawhin, J., Willem, M.: Critical point theory and hamiltonian systems. Springer, New York, 1989. | MR | Zbl
[11] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl
[12] Brezis, H.: Analyse fonctionnelle, théorie et applications. Massons, Paris, 1983. | MR | Zbl