Keywords: Riemann Zeta; Dirichlet Beta; generalized Riemann hypothesis; series representations
@article{AUPO_2014_53_2_a7,
author = {Ossicini, Andrea},
title = {An {Alternative} {Form} of the {Functional} {Equation} for {Riemann{\textquoteright}s} {Zeta} {Function,} {II}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {115--138},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331010},
zbl = {1308.11078},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a7/}
}
TY - JOUR AU - Ossicini, Andrea TI - An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 115 EP - 138 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a7/ LA - en ID - AUPO_2014_53_2_a7 ER -
%0 Journal Article %A Ossicini, Andrea %T An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 115-138 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a7/ %G en %F AUPO_2014_53_2_a7
Ossicini, Andrea. An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 115-138. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a7/
[1] Backlund, R.: Sur les zéros de la fonction $\zeta (s)$ de Riemann. C. R. Acad. Sci. Paris 158 (1914), 1979–1982.
[2] Bellman, R. A.: A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, New York, 1961. | MR | Zbl
[3] Berndt, B. C.: Ramanujan’s Notebooks. Part II. Springer-Verlag, New York, 1989. | MR | Zbl
[4] Borwein, J. M., Calkin, N. J., Manna, D.: Euler-Boole summation revisited. American Mathematical Monthly 116, 5 (2009), 387–412. | DOI | MR | Zbl
[5] Ditkine, V., Proudnikov, A.: Transformations Integrales et Calcul Opèrationnel. Mir, Moscow, 1978. | MR
[6] Edwards, H. M.: Riemann’s Zeta function. Pure and Applied Mathematics 58, Academic Press, New York–London, 1974. | MR | Zbl
[7] Erdelyi, I. et al.: Higher Trascendental Functions. Bateman Manuscript Project 1, McGraw-Hill, New York, 1953.
[8] Euler, L.: Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques. Hist. Acad. Roy. Sci. Belles-Lettres Berlin 17 (1768), 83–106, (Also in: Opera Omnia, Ser. 1, vol. 15, 70–90).
[9] Finch, S. R.: Mathematical Constants. Cambridge Univ. Press, Cambridge, 2003. | MR | Zbl
[10] Ingham, A. E.: The Distribution of Prime Numbers. Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl
[11] Jacobi, C. G. I.: Fundamenta Nova Theoriae Functionum Ellipticarum. Sec. 40, Königsberg, 1829.
[12] Lapidus, M. L., van Frankenhuijsen, M.: Fractal Geometry, Complex Dimension and Zeta Functions. Springer-Verlag, New York, 2006. | MR
[13] Legendre, A. M.: Mémoires de la classe des sciences mathématiques et phisiques de l’Institut de France, Paris. (1809), 477–490.
[14] Ossicini, A.: An alternative form of the functional equation for Riemann’s Zeta function. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/9), 95–111. | MR
[15] Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Gesammelte Werke, Teubner, Leipzig, 1892, reprinted Dover, New York, 1953, first published Monatsberichte der Berliner Akademie, November 1859.
[16] Stirling, J.: Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum. Gul. Bowyer, London, 1730.
[17] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht–Boston–London, 2001. | MR | Zbl
[18] Titchmarsh, E. C., Heath-Brown, D. R.: The Theory of the Riemann Zeta-Function. 2nd ed., Oxford Univ. Press, Oxford, 1986. | MR
[19] Varadarajan, V. S.: Euler Through Time: A New Look at Old Themes. American Mathematical Society, 2006. | MR | Zbl
[20] Varadarajan, V. S.: Euler and his work of infinite series. Bulletin of the American Mathematical Society 44, 4 (2007), 515–539. | DOI | MR
[21] Weil, A.: Number Theory: an Approach Through History from Hammurapi to Legendre. Birkhäuser, Boston, 2007. | MR | Zbl
[22] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. 4th ed., Cambridge Univ. Press, Cambridge, 1988. | MR