Keywords: Nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem
@article{AUPO_2014_53_2_a5,
author = {Li, Xuezhu and Medve\v{d}, Milan and Wang, Jin Rong},
title = {Generalized {Boundary} {Value} {Problems} for {Nonlinear} {Fractional} {Langevin} {Equations}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {85--100},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331008},
zbl = {1318.34008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/}
}
TY - JOUR AU - Li, Xuezhu AU - Medveď, Milan AU - Wang, Jin Rong TI - Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 85 EP - 100 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/ LA - en ID - AUPO_2014_53_2_a5 ER -
%0 Journal Article %A Li, Xuezhu %A Medveď, Milan %A Wang, Jin Rong %T Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 85-100 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/ %G en %F AUPO_2014_53_2_a5
Li, Xuezhu; Medveď, Milan; Wang, Jin Rong. Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 85-100. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/
[1] Baleanu, D., Machado, J. A. T., Luo, A. C.-J.: Fractional Dynamics and Control. Springer, Berlin, 2012. | MR | Zbl
[2] Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. | MR | Zbl
[3] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Vol. 204, Elsevier Science, 2006. | MR | Zbl
[4] Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, 2009. | Zbl
[5] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, 1993. | MR
[6] Michalski, M. W.: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. | MR | Zbl
[7] Podlubny, I.: Fractional Differential Equations. Academic Press, 1999. | MR | Zbl
[8] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. dmlbpublisherSpringer, 2011. | MR
[9] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. | DOI | MR | Zbl
[10] Staněk, S.: Two-point boundary value problems for the generalized Bagley–Torvik fractional differential equation. Cent. Eur. J. Math. 11 (2013), 574–593. | DOI | MR | Zbl
[11] O’Regan, D., Staněk, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641–652. | DOI | MR | Zbl
[12] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations. Mathematische Nachrichten 11 (2011), 1–15.
[13] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear frcational differentil equations. J. Math. Anal. Appl. 37 (2010), 57–68. | DOI
[14] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973–1033. | DOI | MR | Zbl
[15] Ahmad, B., Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory. Topol. Methods Nonlinear Anal. 35 (2010), 295–304. | MR | Zbl
[16] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., TMA 72 (2010), 916–924. | MR | Zbl
[17] Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340–1350. | DOI | MR | Zbl
[18] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216 (2010), 61–69. | DOI | MR | Zbl
[19] Wang, J., Fec̆kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Eq. 8 (2011), 345–361. | DOI | MR | Zbl
[20] Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal., TMA 74 (2011), 5929–5942. | MR | Zbl
[21] Zhang, S.: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278 (2003), 136–148. | DOI | MR | Zbl
[22] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., RWA 11 (2010), 4465–4475. | MR | Zbl
[23] Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for $p$-type fractional neutral differential equations. Nonlinear Anal., TMA 71 (2009), 2724–2733. | MR | Zbl
[24] Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001), 1–4. | DOI
[25] Fa, K. S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, 061104 (2006), 1–4. | DOI
[26] Fa, K. S.: Fractional Langevin equation and Riemann–CLiouville fractional derivative. Eur. Phys. J. E 24 (2007), 139–143. | DOI
[27] Kobolev, V., Romanov, E.: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 139 (2000), 470–476. | DOI
[28] Picozzi, S., West, B.: Fractional Langevin model of memory in financial markets. Phys. Rev. E 66, 046118 (2002), 1–12. | DOI | MR
[29] Bazzani, A., Bassi, G., Turchetti, G.: Diffusion and memory effects for stochastic processes and fractional Langevin equations. Physica A 324 (2003), 530–550. | DOI | MR | Zbl
[30] Lim, S. C., Li, M., Teo, L. P.: Langevin equation with two fractional orders. Phys. Lett. A 372 (2008), 6309–6320. | DOI | MR | Zbl
[31] Ahmad, B., Nieto, J. J.: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Difference Equ. 2010, ID 649486 (2010), 1–10. | MR | Zbl
[32] Ahmad, B., Eloe, P.: A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices. Commun. Appl. Nonlinear Anal. 17 (2010), 69–80. | MR | Zbl
[33] Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., RWA 13 (2012), 599–606. | MR | Zbl
[34] Chen, A., Chen, Y.: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions. Bound. Value Probl. 2011, ID 516481 (2011), 1–17. | MR | Zbl
[35] Ibrahim, R. W.: Existence of nonlinear Lane–Emden equation of fractional order. Math. Notes, Miskolc 13 (2012), 39–52. | MR | Zbl
[36] Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A.: Generalized Langevin equation with a three parameter Mittag–Leffler noise. Physica A 390 (2011), 3627–3636. | DOI
[37] Sandev, T., Metzler, R., Tomovski, Ž.: Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 15 (2012), 426–450. | DOI | MR | Zbl
[38] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge, 1980. | MR | Zbl
[39] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi–Kober fractional operator. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129–3139. | DOI | MR | Zbl