Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 85-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results.
In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results.
Classification : 26A33, 34A12, 34G20
Keywords: Nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem
@article{AUPO_2014_53_2_a5,
     author = {Li, Xuezhu and Medve\v{d}, Milan and Wang, Jin Rong},
     title = {Generalized {Boundary} {Value} {Problems} for {Nonlinear} {Fractional} {Langevin} {Equations}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {85--100},
     year = {2014},
     volume = {53},
     number = {2},
     mrnumber = {3331008},
     zbl = {1318.34008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/}
}
TY  - JOUR
AU  - Li, Xuezhu
AU  - Medveď, Milan
AU  - Wang, Jin Rong
TI  - Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 85
EP  - 100
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/
LA  - en
ID  - AUPO_2014_53_2_a5
ER  - 
%0 Journal Article
%A Li, Xuezhu
%A Medveď, Milan
%A Wang, Jin Rong
%T Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 85-100
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/
%G en
%F AUPO_2014_53_2_a5
Li, Xuezhu; Medveď, Milan; Wang, Jin Rong. Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 85-100. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a5/

[1] Baleanu, D., Machado, J. A. T., Luo, A. C.-J.: Fractional Dynamics and Control. Springer, Berlin, 2012. | MR | Zbl

[2] Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. | MR | Zbl

[3] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Vol. 204, Elsevier Science, 2006. | MR | Zbl

[4] Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, 2009. | Zbl

[5] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, 1993. | MR

[6] Michalski, M. W.: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. | MR | Zbl

[7] Podlubny, I.: Fractional Differential Equations. Academic Press, 1999. | MR | Zbl

[8] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. dmlbpublisherSpringer, 2011. | MR

[9] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. | DOI | MR | Zbl

[10] Staněk, S.: Two-point boundary value problems for the generalized Bagley–Torvik fractional differential equation. Cent. Eur. J. Math. 11 (2013), 574–593. | DOI | MR | Zbl

[11] O’Regan, D., Staněk, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641–652. | DOI | MR | Zbl

[12] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations. Mathematische Nachrichten 11 (2011), 1–15.

[13] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear frcational differentil equations. J. Math. Anal. Appl. 37 (2010), 57–68. | DOI

[14] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973–1033. | DOI | MR | Zbl

[15] Ahmad, B., Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory. Topol. Methods Nonlinear Anal. 35 (2010), 295–304. | MR | Zbl

[16] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., TMA 72 (2010), 916–924. | MR | Zbl

[17] Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340–1350. | DOI | MR | Zbl

[18] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216 (2010), 61–69. | DOI | MR | Zbl

[19] Wang, J., Fec̆kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Eq. 8 (2011), 345–361. | DOI | MR | Zbl

[20] Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal., TMA 74 (2011), 5929–5942. | MR | Zbl

[21] Zhang, S.: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278 (2003), 136–148. | DOI | MR | Zbl

[22] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., RWA 11 (2010), 4465–4475. | MR | Zbl

[23] Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for $p$-type fractional neutral differential equations. Nonlinear Anal., TMA 71 (2009), 2724–2733. | MR | Zbl

[24] Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001), 1–4. | DOI

[25] Fa, K. S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, 061104 (2006), 1–4. | DOI

[26] Fa, K. S.: Fractional Langevin equation and Riemann–CLiouville fractional derivative. Eur. Phys. J. E 24 (2007), 139–143. | DOI

[27] Kobolev, V., Romanov, E.: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 139 (2000), 470–476. | DOI

[28] Picozzi, S., West, B.: Fractional Langevin model of memory in financial markets. Phys. Rev. E 66, 046118 (2002), 1–12. | DOI | MR

[29] Bazzani, A., Bassi, G., Turchetti, G.: Diffusion and memory effects for stochastic processes and fractional Langevin equations. Physica A 324 (2003), 530–550. | DOI | MR | Zbl

[30] Lim, S. C., Li, M., Teo, L. P.: Langevin equation with two fractional orders. Phys. Lett. A 372 (2008), 6309–6320. | DOI | MR | Zbl

[31] Ahmad, B., Nieto, J. J.: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Difference Equ. 2010, ID 649486 (2010), 1–10. | MR | Zbl

[32] Ahmad, B., Eloe, P.: A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices. Commun. Appl. Nonlinear Anal. 17 (2010), 69–80. | MR | Zbl

[33] Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., RWA 13 (2012), 599–606. | MR | Zbl

[34] Chen, A., Chen, Y.: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions. Bound. Value Probl. 2011, ID 516481 (2011), 1–17. | MR | Zbl

[35] Ibrahim, R. W.: Existence of nonlinear Lane–Emden equation of fractional order. Math. Notes, Miskolc 13 (2012), 39–52. | MR | Zbl

[36] Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A.: Generalized Langevin equation with a three parameter Mittag–Leffler noise. Physica A 390 (2011), 3627–3636. | DOI

[37] Sandev, T., Metzler, R., Tomovski, Ž.: Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 15 (2012), 426–450. | DOI | MR | Zbl

[38] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge, 1980. | MR | Zbl

[39] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi–Kober fractional operator. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129–3139. | DOI | MR | Zbl