Keywords: Mean curvature flow; level set equation; numerical solution; semi-implicit scheme; discrete duality finite volume method (DDFV)
@article{AUPO_2014_53_2_a4,
author = {Kotorov\'a, Dana},
title = {Comparison of the {3D} {Numerical} {Schemes} for {Solving} {Curvature} {Driven} {Level} {Set} {Equation} {Based} on {Discrete} {Duality} {Finite} {Volumes}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {71--83},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331007},
zbl = {06417001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a4/}
}
TY - JOUR AU - Kotorová, Dana TI - Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 71 EP - 83 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a4/ LA - en ID - AUPO_2014_53_2_a4 ER -
%0 Journal Article %A Kotorová, Dana %T Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 71-83 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a4/ %G en %F AUPO_2014_53_2_a4
Kotorová, Dana. Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 71-83. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a4/
[1] Andreianov, B., Bendahmare, M., Karlsen, K. H.: A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality. In: Finite Volume For Complex Applications, Problems And Perspectives. 5th International Conference, Wiley, London, 2008, 161–168. | MR
[2] Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray–Lions type elliptic problems on general 2D meshes. Numerical Methods PDE 23, 1 (2007), 145–195. | DOI | MR | Zbl
[3] Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations. Algoritmy 2009 (2009), 51–60. | Zbl
[4] Evans, L. C., Spruck, J.: Motion of the level sets by mean curvature I. J. Differential Geometry 3 (1991), 635–681. | MR
[5] Eymard, R., Gallouë, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis (Ph., Ciarlet, J. L., Lions, eds.), 3 (2000), 713–1018. | MR
[6] Handlovičová, A., Kotorová, D.: Stability of the semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D. Tatra Mountains Mathematical Publications, accepted.
[7] Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes. Journal of Computational Physics 228, 16 (2009), 5763–5786. | DOI | MR | Zbl
[8] Kotorová, D.: Discrete duality finite volume scheme for the curvature-driven level set equation. Acta Polytechnica Hungarica 8, 3 (2011), 7–12.
[9] Kotorová, D.: Discrete duality finite volume scheme for the curvature driven level set equation in 3D. In: Advances in architectural, civil and environmental engineering [electronic source]: 22nd Annual PhD Student Conference, Nakl. STU, Bratislava, 2012, 33–39.
[10] Kotorová, D.: 3D numerical schemes for the level set equation based on discrete duality finite volumes. to appear.
[11] Sethian, J. A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999. | MR