Keywords: Initial value problems; Runge–Kutta–Nystrom pairs; zero dissipative
@article{AUPO_2014_53_2_a3,
author = {Imoni, S. O. and Ikhile, M. N. O.},
title = {Zero {Dissipative} {DIRKN} {Pairs} of {Order} 5(4) for {Solving} {Special} {Second} {Order} {IVPs}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {53--69},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331006},
zbl = {1311.65098},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a3/}
}
TY - JOUR AU - Imoni, S. O. AU - Ikhile, M. N. O. TI - Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 53 EP - 69 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a3/ LA - en ID - AUPO_2014_53_2_a3 ER -
%0 Journal Article %A Imoni, S. O. %A Ikhile, M. N. O. %T Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 53-69 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a3/ %G en %F AUPO_2014_53_2_a3
Imoni, S. O.; Ikhile, M. N. O. Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 53-69. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a3/
[1] Allen, R. C., Wing, G. M.: An invariant imbedding algorithm for the solution of inhomogeneous linear two-point boundary value-problems. J. Computer Physics 14 (1974), 40–45. | DOI | MR | Zbl
[2] Butcher, J. C., Chen, D. J.: A new Type of Singly-implicit Runge–Kutta Method. Applied Numerical Mathematics 34 (2000), 179–188. | DOI | MR | Zbl
[3] Dormand, J. R., El-Mikkawy, M. E. A., Prince, P. J.: Families of Runge–Kutta Nystrom Formulas. IMA J. Num. Analysis 7 (1987), 235–250. | DOI | MR
[4] El-Mikkawy, M., El-Dousky, R. A.: New optimized non-FSAL Embedded Runge–Kutta Nystrom algorithms of orders 6 and 4 in six stages. Applied Mathematics and computer 145 (2003), 33–43. | DOI | MR
[5] Fehlberg, E.: Classical eight and lower-order Runge–Kutta–Nystrom formulae with step size control for the special second-order differential equations. Technical Report, R-381, NASA, 1972.
[6] Fillipi, S., Graf, J.: New Runge–Kutta–Nystrom Formulae pairs of order $8(7)$, $9(8)$, $10(9)$ and $11(10)$ for differential equation of the form $y^{\prime \prime } =f(x,y)$. J. computing Appl. Math. 14 (1986), 362–370. | MR
[7] Ferracina, L., Spijker, M. N.: Strong stability of singly-diagonally implicit Runge–Kutta methods. Applied Numerical Mathematics 58 (2008), 1675–1686. | DOI | MR | Zbl
[8] Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff problems. springer-Verlag, Berlin, 1993. | MR
[9] Imoni, S. O., Otunta, F. O., Ramamohan, T. R.: Embedded implicit Runge–Kutta–Nystrom method for solving second order differential equations. International Journal of Computer Mathematics 83, 11 (2006), 777–784. | DOI | MR | Zbl
[10] Imoni, S. O., Otunta, F. O., Ikhile, M. N. O.: Embedded diagonally implicit Runge–Kutta–Nystrom method of order two and three for special second order differential equations. The Journal of the Mathematical Association of Nigeria (ABACUS) 34, 213 (2007), 363–373.
[11] Kanagarajam, K., Sambath, M.: Runge–Kutta–Nystrom method of order three for solving Fuzzy Differential Equations. Computational methods in Applied Mathematics 10, 2 (2010), 195–203. | MR
[12] Papakostas, S. N., Tsitouras, Ch.: High phase-lag order Runge–Kutta–Nystrom pairs. SIAM J. Sci. Comput. 21 (2002), 747–763. | DOI | MR
[13] Qinghong, Li, Yongzhong, S.: Explicit one-step p-stable methods for second order periodic initial value problems. Numerical Mathematics, Journal of Chinese Universities (English series) 15, 3 (2006), 237–247. | MR | Zbl
[14] Sharp, P. W., Fine, J. M.: A contrast of direct and transformed Nystrom pairs. J. Comput. Appl. Math 42 (1992), 293–308. | DOI | MR | Zbl
[15] Sharp, P. W., Fine, J. M., Burrage, K.: Two-stage and three-stage diagonally implicit Runge–Kutta–Nystrom methods of orders three and four. IMA Journal Numerical Analysis 10 (1990), 489–504. | DOI | MR | Zbl
[16] Sommeijer, B. P.: A note on a diagonally implicit Runge–Kutta–Nystrom Method. J. Comput. Appl. Math. 19 (1987), 395–399. | DOI | MR | Zbl
[17] Simos, T. E., Famelis, I. T., Tsitouras, Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numerical Algorithms 34 (2003), 27–40. | DOI | MR | Zbl
[18] Simos, T. E., Dimas, E., Sideridis, A. B.: A Runge–Kutta–Nystrom method for the numerical integration of special second-order periodic initial-value problems. J. Computational and Applied Maths. 51 (1994), 317–326. | DOI | MR | Zbl
[19] Van der Houwen, P. J., Sommeijer, B. P.: Diagonally Implicit Runge–Kutta–Nystrom methods for oscillatory problems. SIAM J. Numerical Analysis 26, 2 (1989), 414–429. | DOI | MR | Zbl