Compatible Idempotent Terms in Universal Algebra
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 35-51 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf {A}\in \mathcal {V}$, but only for congruence classes of values of the term operation $t^{\mathbf {A}}$.
In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf {A}\in \mathcal {V}$, but only for congruence classes of values of the term operation $t^{\mathbf {A}}$.
Classification : 03C05, 08A30, 08B10
Keywords: Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism
@article{AUPO_2014_53_2_a2,
     author = {Chajda, Ivan and Ledda, Antonio and Paoli, Francesco},
     title = {Compatible {Idempotent} {Terms} in {Universal} {Algebra}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {35--51},
     year = {2014},
     volume = {53},
     number = {2},
     mrnumber = {3331005},
     zbl = {1315.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Ledda, Antonio
AU  - Paoli, Francesco
TI  - Compatible Idempotent Terms in Universal Algebra
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 35
EP  - 51
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a2/
LA  - en
ID  - AUPO_2014_53_2_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Ledda, Antonio
%A Paoli, Francesco
%T Compatible Idempotent Terms in Universal Algebra
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 35-51
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a2/
%G en
%F AUPO_2014_53_2_a2
Chajda, Ivan; Ledda, Antonio; Paoli, Francesco. Compatible Idempotent Terms in Universal Algebra. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 35-51. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a2/

[1] Bignall, R. J., Leech, J.: Skew Boolean algebras and discriminator varieties. Algebra Universalis 33 (1995), 387–398. | DOI | MR | Zbl

[2] Blok, W. J., Raftery, J. G.: Assertionally equivalent quasivarieties. International Journal of Algebra and Computation 18, 4 (2008), 589–681. | DOI | MR | Zbl

[3] Bou, F., Paoli, F., Ledda, A., Freytes, H.: On some properties of quasi-MV algebras and $\sqrt{^{\prime }}$quasi-MV algebras, II. Soft Computing 12, 4 (2008), 341–352. | DOI | Zbl

[4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, Berlin, 1981. | MR | Zbl

[5] Chajda, I.: Normally presented varieties. Algebra Universalis 34 (1995), 327–335. | DOI | MR | Zbl

[6] Chajda, I.: Jónsson’s lemma for normally presented varieties. Mathematica Bohemica 122, 4 (1997), 381–382. | MR | Zbl

[7] Chajda, I., Czédli, G., Horváth, E. K.: Trapezoid Lemma and congruence distributivity. Mathematica Slovaca 53, 3 (2003), 247–253. | MR | Zbl

[8] Chajda, I., Czédli, G., Horváth, E. K.: Shifting Lemma and shifting lattice identities. Algebra Universalis 50 (2003), 51–60. | DOI | MR | Zbl

[9] Chajda, I., Horváth, E. K.: A triangular scheme for congruence distributivity. Acta Sci. Math. (Szeged) 68 (2002), 29–35. | MR | Zbl

[10] Chajda, I., Rosenberg, I.: Remarks on Jónsson’s lemma. Houston Journal of Mathematics 22, 2 (1996), 249–262. | MR | Zbl

[11] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999. | MR

[12] Cornish, W. H.: Constructions for BCK-algebras. Math. Sem. Notes Kobe Univ. 11 (1983), 1–7. | MR | Zbl

[13] Di Nola, A., Dvurečenskij, A.: State-morphism MV algebras. Annals of Pure and Applied Logic 161, 2 (2009), 161–173. | DOI | MR | Zbl

[14] Esteva, F., Godo, L.: Monoidal t-norm based logic: Towards a logic of left-continuous t-norms. Fuzzy Sets and Systems 124 (2001), 271–288. | DOI | MR

[15] Fleischer, I.: A note on subdirect products. Acta Math. Acad. Sci. Hungar. 6 (1955), 463–465. | DOI | MR | Zbl

[16] Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Notes, 125, Cambridge University Press, Cambridge, 1987. | MR | Zbl

[17] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. | DOI | MR | Zbl

[18] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse on Substructural Logics. Elsevier, Amsterdam, 2007.

[19] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman and Co., San Francisco, 1971. | MR

[20] Gumm, H. P.: Geometrical Methods in Congruence Modular Algebras. Memoirs Amer. Math. Soc., Amer. Math. Soc., 1983. | MR | Zbl

[21] Jónsson, B., Tsinakis, C.: Products of classes of residuated structures. Studia Logica 77 (2004), 267–292. | DOI | MR | Zbl

[22] Kowalski, T., Paoli, F.: On some properties of quasi-MV algebras and square root quasi-MV algebras, III. Reports on Mathematical Logic 45 (2010), 161–199. | MR

[23] Kowalski, T., Paoli, F.: Joins and subdirect products of varieties. Algebra Universalis 65, 4 (2011), 371–391. | DOI | MR | Zbl

[24] Kowalski, T., Paoli, F., Spinks, M.: Quasi-subtractive varieties. Journal of Symbolic Logic 76, 4 (2011), 1261–1286. | DOI | MR | Zbl

[25] Ledda, A., Konig, M., Paoli, F., Giuntini, R.: MV algebras and quantum computation. Studia Logica 82, 2 (2006), 245–270. | DOI | MR | Zbl

[26] Leech, J.: Skew lattices in rings. Algebra Universalis 26 (1989), 48–72. | DOI | MR | Zbl

[27] Leech, J.: Recent developments in the theory of skew lattices. Semigroup Forum 52 (1996), 7–24. | DOI | MR | Zbl

[28] Paoli, F., Ledda, A., Kowalski, T., Spinks, M.: Quasi-discriminator varieties. International Journal of Algebra and Computation 24, 3 (2014), 375–411. | DOI | MR

[29] Petrich, I.: Lectures on semigroups. Wiley and Sons, New York, 1977.

[30] Salibra, A., Ledda, A., Paoli, F., Kowalski, T.: Boolean-like algebras. Algebra Universalis 69, 2 (2013), 113–138. | DOI | MR | Zbl

[31] Sankappanavar, H. P.: Congruence lattices of pseudocomplemented semilattices. Algebra Universalis 9 (1979), 304–316. | DOI | MR | Zbl

[32] Spinks, M.: On the Theory of Pre-BCK Algebras. Ph.D. Thesis, Monash University, 2003.