Keywords: Orthomodular poset; partial commutative groupoid with unit; conditionally residuated structure; divisibility condition; orthogonality condition
@article{AUPO_2014_53_2_a1,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Orthomodular {Posets} {Can} {Be} {Organized} as {Conditionally} {Residuated} {Structures}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {29--33},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331004},
zbl = {06416998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a1/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Orthomodular Posets Can Be Organized as Conditionally Residuated Structures JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 29 EP - 33 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a1/ LA - en ID - AUPO_2014_53_2_a1 ER -
%0 Journal Article %A Chajda, Ivan %A Länger, Helmut %T Orthomodular Posets Can Be Organized as Conditionally Residuated Structures %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 29-33 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a1/ %G en %F AUPO_2014_53_2_a1
Chajda, Ivan; Länger, Helmut. Orthomodular Posets Can Be Organized as Conditionally Residuated Structures. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 29-33. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a1/
[1] Bělohlávek, R.: Fuzzy Relational Systems. Foundations and Principles. Kluwer, New York, 2002. | Zbl
[2] Beran, L.: Orthomodular Lattices, Algebraic Approach. Academia, Prague, 1984. | MR
[3] Chajda, I., Halaš, R.: Effect algebras are conditionally residuated structures. Soft Computing 15 (2011), 1383–1387. | DOI | Zbl
[4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. | MR
[5] Engesser, K., Gabbay, D. M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures – Quantum Logic. Elsevier/North-Holland, Amsterdam, 2009. | MR | Zbl
[6] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352. | DOI | MR
[7] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. | MR | Zbl
[8] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl
[9] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1–21. | DOI | MR | Zbl
[10] Navara, M.: Characterization of state spaces of orthomodular structures. In: Proc. Summer School on Real Analysis and Measure Theory, Grado, Italy, (1997), 97–123.
[11] Pták, P.: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. 126 (1998), 2039–2046. | DOI | MR | Zbl
[12] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991. | MR