Keywords: Menzerath–Altmann law; fractal analysis; accuracy of data approximations; accuracy of shape parameter estimates; optimal usage of formulas
@article{AUPO_2014_53_2_a0,
author = {Andres, Jan and Bene\v{s}ov\'a, Martina and Chvostekov\'a, Martina and Fi\v{s}erov\'a, Eva},
title = {Optimization of {Parameters} in {the~Menzerath{\textendash}Altmann} {Law,} {II}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {5--28},
year = {2014},
volume = {53},
number = {2},
mrnumber = {3331003},
zbl = {1310.62037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a0/}
}
TY - JOUR AU - Andres, Jan AU - Benešová, Martina AU - Chvosteková, Martina AU - Fišerová, Eva TI - Optimization of Parameters in the Menzerath–Altmann Law, II JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 5 EP - 28 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a0/ LA - en ID - AUPO_2014_53_2_a0 ER -
%0 Journal Article %A Andres, Jan %A Benešová, Martina %A Chvosteková, Martina %A Fišerová, Eva %T Optimization of Parameters in the Menzerath–Altmann Law, II %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 5-28 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a0/ %G en %F AUPO_2014_53_2_a0
Andres, Jan; Benešová, Martina; Chvosteková, Martina; Fišerová, Eva. Optimization of Parameters in the Menzerath–Altmann Law, II. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 5-28. http://geodesic.mathdoc.fr/item/AUPO_2014_53_2_a0/
[1] Altmann, G.: Prolegomena to Menzerath’s law. Glottometrika 2 (1980), 1–10.
[2] Altmann, G., Schwibbe, M. H.: Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989.
[3] Andres, J.: The Moran–Hutchinson formula in terms of Menzerath–Altmann’s law and Zipf–Mandelbrot’s law. In: Altmann, G., Čech, R., Mačutek, J., Uhlířová, L. (eds.): Empirical Approaches to Text and Language Analysis. Studies in Quantitative Linguistics 17, RAM-Verlag, Lüdenscheid, 2014, 29–44.
[4] Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27. | MR | Zbl
[5] Andres, J.: On de Saussure’s principle of linearity and visualization of language structures. Glottotheory 2, 2 (2009), 1–14. | DOI
[6] Andres, J.: On a conjecture about the fractal structure of language. Journal of Quantitative Linguistics 17, 2 (2010), 101–122. | DOI
[7] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven. Glottometrics 21 (2011), 73–98.
[8] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven, II. Journal of Quantitative Linguistics 19, 4 (2012), 301–324. | DOI
[9] Andres, J., Benešová, M., Kubáček, L., Vrbková, J.: Methodological note on the fractal analysis of texts. Journal of Quantitative Linguistics 19, 1 (2012), 1–31. | DOI
[10] Chatterjee, S., Hadi, A. S.: Regression Analysis by Example. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. | Zbl
[11] Cramer, I.: The parameters of the Altmann–Menzerath law. Journal of Quantitative Linguistics 12, 1 (2005), 41–52. | DOI
[12] Eisenhauer, J. G.: Regression through the Origin. Teaching Statistics. 25 (2003), 76–80. | DOI
[13] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, New York, 1993. | MR | Zbl
[14] Hřebíček, L.: The constants of Menzerath–Altmann’s law. Glottometrika. 12 (1990), 61–71.
[15] Hřebíček, L.: Text Levels. Language Constructs, Constituents and the Menzerath–Altmann Law. Wissenschaftlicher Verlag Trier, Trier, 1995.
[16] Hřebíček, L.: Lectures on Text Theory. The Academy of the Sciences of the Czech Republic (Oriental Institute), Prague, 1997.
[17] Köhler, R.: Das Menzerathsche Gesetz auf Satzebene. Glottometrika 4 (1982), 103–113.
[18] Köhler, R.: Zur Interpretation des Menzerathschen Gesetzes. Glottometrika 6 (1984), 177–183.
[19] Köhler, R.: Das Menzerathsche Gesetz als Resultat des Sprachverarbeitungsmechanismus. In: Altmann, G., Schwibbe, M. H. (eds.): Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989, 108–116.
[20] Kulacka, A.: The coefficients in the formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 17, 4 (2010), 257–268. | DOI
[21] Kulacka, A., Mačutek, J.: A discrete formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 14, 1 (2007), 23–32. | DOI
[22] Montgomery, D. C., Peck, E. A., Vinig, G. G.: Introduction to Linear Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. | MR
[23] Prün, C.: Validity of Menzerath-Altmann’s law: graphic representation of language, information processing systems and synergetic linguistics. Journal of Quantitative Linguistics 1, 2 (1994), 148–155. | DOI
[24] Thode, H. C.: Testing for Normality. Marcel Dekker, New York, 2002. | MR | Zbl
[25] White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 4 (1980), 817–838. | DOI | MR | Zbl
[26] Wimmer, G., Altmann, G.: Unified derivation of some linguistic laws. In: Köhler, R., Altmann, G., Piotrowski, R. G. (eds.): Quantitative Linquistics. An International Handbook. De Gruyter, Berlin, 2005, 791–807.
[27] Wimmer, G., Altmann, G., Hřebíček, L., Ondrejovič, S., Wimmerová, S.: Introduction to the Analysis of Texts. Veda, Bratislava, 2003, (in Slovak).