Keywords: third order nonlinear differential equation; singular nonlinearity; positive solution; decaying solution; asymptotic behavior; regularly varying functions
@article{AUPO_2014_53_1_a6,
author = {Ku\v{c}erov\'a, Ivana},
title = {Decaying {Regularly} {Varying} {Solutions} of {Third-order} {Differential} {Equations} with a {Singular} {Nonlinearity}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {91--105},
year = {2014},
volume = {53},
number = {1},
mrnumber = {3331073},
zbl = {1311.34069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a6/}
}
TY - JOUR AU - Kučerová, Ivana TI - Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 91 EP - 105 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a6/ LA - en ID - AUPO_2014_53_1_a6 ER -
%0 Journal Article %A Kučerová, Ivana %T Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 91-105 %V 53 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a6/ %G en %F AUPO_2014_53_1_a6
Kučerová, Ivana. Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a6/
[1] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation. Encyklopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987. | MR | Zbl
[2] Evtukhov, V. M., Samoilenko, A. M.: Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities. Differ. Uravn. 47 (2011), 628–650, (in Russian); translation in Differ. Equ. 47 (2011), 627–649. | DOI | MR | Zbl
[3] Jaroš, J., Kusano, T., Tanigawa, T.: Asymptotic analysis of positive solutions of a class of third order nonlinear differential equations in the framework of regular variation. Math. Nachr. 286 (2013), 205–223. | DOI | MR | Zbl
[4] Jaroš, J., Kusano, T., Tanigawa, T.: Existence and precise asymptotics of positive solutions for a class of nonlinear differenctial equations of the third order. Georgian Math. J. 20 (2013), 493–531. | DOI | MR
[5] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of quasilinear ordinary differential equations with singular nonlinearities. Nonlinear Anal. 68 (2008), 1627–1639. | DOI | MR | Zbl
[6] Kusano, T., Manojlović, J.: Asymptotic behavior of positive solutions of odd order Emden–Fowler type differential equations in the framework of regular variation. Electron. J. Qual. Theory Differ. Equ. 45 (2012), 1–23. | DOI | MR
[7] Kusano, T., Manojlović, J.: Asymptotic behavior of positive solutions of sublinear differential equations of Emden–Fowler type. Comput. Math. Appl. 62 (2011), 551–565. | DOI | MR | Zbl
[8] Kusano, T., Tanigawa, T.: Positive solutions to a class of second order differential equations with singular nonlinearities. Appl. Anal. 69 (1998), 315–331. | MR | Zbl
[9] Marić, V.: Regular Variation and Differential Equations. Lecture notes in Mathematics 1726, Springer-Verlag, Berlin–Heidelberg, 2000. | MR
[10] Tanigawa, T.: Positive solutions to second order singular differential equations involving the one-dimensional M-Laplace operator. Georgian Math. J. 6 (1999), 347–362. | DOI | MR | Zbl
[11] Taylor, A. E.: L’Hospital’s rule. Amer. Math. Monthly 59 (1952), 20–24. | MR | Zbl