Keywords: foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability
@article{AUPO_2014_53_1_a5,
author = {Ida, Cristian},
title = {Stability of {Tangential} {Locally} {Conformal} {Symplectic} {Forms}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {81--89},
year = {2014},
volume = {53},
number = {1},
mrnumber = {3331072},
zbl = {1318.53018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a5/}
}
TY - JOUR AU - Ida, Cristian TI - Stability of Tangential Locally Conformal Symplectic Forms JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 81 EP - 89 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a5/ LA - en ID - AUPO_2014_53_1_a5 ER -
Ida, Cristian. Stability of Tangential Locally Conformal Symplectic Forms. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 81-89. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a5/
[1] Banyaga, A.: Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77, 2 (2002), 383–398. | DOI | MR | Zbl
[2] Banyaga, A.: Examples of non $d_{\omega }$-exact locally conformal symplectic forms. Journal of Geometry 87, 1-2 (2007), 1–13. | DOI | MR | Zbl
[3] Bande, G., Kotschick, D.: Moser stability for locally conformally symplectic structures. Proc. Amer. Math. Soc. 137 (2009), 2419–2424. | DOI | MR | Zbl
[4] Bott, R., Tu, L. W.: Differential Forms in Algebraic Topology. Graduate Text in Math. 82 Springer-Verlag, Berlin, 1982. | MR | Zbl
[5] Datta, M., Islam, Md R.: Smooth maps of a foliated manifold in a symplectic manifold. Proc. Indian Acad. Sci. (Math. Sci.) 119, 3 (2009), 333–343. | DOI | MR | Zbl
[6] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Geometric and Algebraic Toplogical Methods in Quantum Mechanics. World Scientific, Singapore, 2005. | MR
[7] Guedira, F., Lichnerowicz, A.: Geometrie des algebres de Lie locales de Kirillov. J. Math. Pures et Appl. 63 (1984), 407–484. | MR | Zbl
[8] Haller, S., Rybicki, T.: On the Group of Diffeomorphisms Preserving a Locally Conformal Symplectic Structure. Annals of Global Analysis and Geometry 17, 5 (1999), 475–502. | DOI | MR | Zbl
[9] Hector, G., Macias, E., Saralegi, M.: Lemme de Moser feuilleté et classification des variétés de Poisson réguliéres. Publ. Mat. 33 (1989), 423–430. | DOI | MR | Zbl
[10] El Kacimi, A. A.: Sur la cohomologie feuilletée. Compositio Mathematica 49, 2 (1983), 195–215. | MR | Zbl
[11] Lee, H. C.: A kind of even-dimensional differential geometry and its application to exterior calculus. Amer. J. Math. 65 (1943), 433–438. | DOI | MR | Zbl
[12] de León, M., López, B., Marrero, J. C., Padrón, E.: On the computation of the Lichnerowicz–Jacobi cohomology. J. Geom. Phys. 44 (2003), 507–522. | DOI | MR | Zbl
[13] Lichnerowicz, A.: Les variétés de Poisson et leurs algébres de Lie associées. J. Differential Geom. 12, 2 (1977), 253–300. | MR | Zbl
[14] Molino, P.: Riemannian foliations. Progress in Mathematics 73 Birkhäuser, Boston, 1988. | MR | Zbl
[15] Moore, C. C., Schochet, C.: Global Analysis on Foliated Spaces. MSRI Publications 9 Springer-Verlag, New York, 1988. | MR | Zbl
[16] Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. | DOI | MR | Zbl
[17] Mümken, B.: On Tangential Cohomology of Riemannian Foliations. American J. Math. 128, 6 (2006), 1391–1408. | DOI | MR | Zbl
[18] Novikov, S. P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat. Nauk 37 (1982), 3-49. (1982), 3–49 (in Russian). | MR
[19] Ornea, L., Verbitsky, M.: Morse–Novikov cohomology of locally conformally Kähler manifolds. J. of Geometry and Physics 59 (2009), 295–305. | DOI | MR | Zbl
[20] Rybicki, T.: On foliated, Poisson and Hamiltonian diffeomorphisms. Diff. Geom. Appl. 15 (2001), 33–46. | DOI | MR | Zbl
[21] Tondeur, Ph.: Foliations on Riemannian Manifolds. Universitext, Springer-Verlag, 1988. | MR | Zbl
[22] Vaisman, I.: Variétés riemanniene feuilletées. Czechoslovak Math. J. 21 (1971), 46–75.
[23] Vaisman, I.: Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compositio Math. 40, 3 (1980), 287–299. | MR | Zbl
[24] Vaisman, I.: Locally conformal symplectic manifolds. Internat. J. Math. and Math. Sci. 8, 3 (1985), 521–536. | MR | Zbl