Modal Pseudocomplemented De Morgan Algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
Classification : 03G99, 06D15, 06D30
Keywords: pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences
@article{AUPO_2014_53_1_a4,
     author = {Figallo, Aldo V. and Oliva, Nora and Ziliani, Alicia},
     title = {Modal {Pseudocomplemented} {De~Morgan} {Algebras}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {65--79},
     year = {2014},
     volume = {53},
     number = {1},
     mrnumber = {3331071},
     zbl = {06416942},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a4/}
}
TY  - JOUR
AU  - Figallo, Aldo V.
AU  - Oliva, Nora
AU  - Ziliani, Alicia
TI  - Modal Pseudocomplemented De Morgan Algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 65
EP  - 79
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a4/
LA  - en
ID  - AUPO_2014_53_1_a4
ER  - 
%0 Journal Article
%A Figallo, Aldo V.
%A Oliva, Nora
%A Ziliani, Alicia
%T Modal Pseudocomplemented De Morgan Algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 65-79
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a4/
%G en
%F AUPO_2014_53_1_a4
Figallo, Aldo V.; Oliva, Nora; Ziliani, Alicia. Modal Pseudocomplemented De Morgan Algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a4/

[1] Adams, M.: Principal congruences in De Morgan algebras. Proc. Edinb. Math. Soc. 30 (1987), 415–421. | DOI | MR | Zbl

[2] Balbes, R., Dwinger, Ph.: Distributive Lattices. Univ. of Missouri Press, Columbia, 1974. | MR | Zbl

[3] Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Col. Pub., 25, 3rd ed., Providence, 1967. | MR | Zbl

[4] Blok, W., Köler, P., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences II. Algebra Universalis 18 (1984), 334–379. | DOI | MR

[5] Blok, W., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences I. Algebra Universalis 15 (1982), 195–227. | DOI | MR | Zbl

[6] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz–Moisil Algebras. North–Holland, Amsterdam, 1991. | MR | Zbl

[7] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics, 78, Springer–Verlag, Berlin, 1981. | DOI | MR | Zbl

[8] Cornish, W., Fowler, P.: Coproducts of De Morgan algebras. Bull. Aust. Math. Soc. 16 (1977), 1–13. | DOI | MR | Zbl

[9] Figallo, A. V.: Tópicos sobre álgebras modales $4$-valuadas. In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992), Notas de Lógica Matemática 39 (1992), 145–157. | MR

[10] Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras. Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.

[11] Font, J., Rius, M.: An abstract algebraic logic approach to tetravalent modal logics. J. Symbolic Logic 65 (2000), 481–518. | DOI | MR | Zbl

[12] Fried, E., Pixley, A.: The dual discriminator function in universal algebra. Acta Sci. Math. 41 (1979), 83–100. | MR | Zbl

[13] Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188.

[14] Grätzer, G., Lakser, H.: The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343–358. | MR | Zbl

[15] Kalman, J.: Lattices with involution. Trans. Amer. Math. Soc. 87 (1958), 485–491. | DOI | MR | Zbl

[16] Hecht, T., Katriňák, T.: Principal congruences of $p$-algebras and double $p$-algebras. Proc. Amer. Math. Soc. 58 (1976), 25–31. | MR | Zbl

[17] Loureiro, I.: Axiomatisation et propriétés des algèbres modales tétravalentes. C. R. Math. Acad. Sci. Paris 295, Série I (1982), 555–557. | MR | Zbl

[18] Loureiro, I.: Algebras Modais Tetravalentes. PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983.

[19] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. | DOI | MR | Zbl

[20] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. P. London Math. Soc. 24, 3 (1972), 507–530. | DOI | MR | Zbl

[21] Priestley, H. A.: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 39–60. | MR | Zbl

[22] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element. Surma Brasil Math. 2 (1949), 43–49. | MR | Zbl

[23] Romanowska, A.: Subdirectly irreducible pseudocomplemented De Morgan algebras. Algebra Universalis 12 (1981), 70–75. | DOI | MR | Zbl

[24] Sankappanavar, H.: Pseudocomplemented Okham and Demorgan algebras. Z. Math. Logik Grundlagen Math. 32 (1986), 385–394. | DOI | MR

[25] Sankappanavar, H.: Principal congruences of pseudocomplemented Demorgan algebras. Z. Math. Logik Grundlagen Math. 33 (1987), 3–11. | DOI | MR | Zbl

[26] Varlet, J.: Algèbres de Łukasiewicz trivalentes. Bull. Soc. Roy. Liège (1968), 9–10.

[27] Werner, H.: Discriminator–Algebras. Algebraic representation and modal theoretic properties, Akademie–Verlag, Berlin, 1978. | MR | Zbl