Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 45-64 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We say that the function $f\colon [a,b] \rightarrow \mathbb {R}$ is under the chord if \begin{equation*} \frac{\left( b-t\right) f(a) +\left( t-a\right) f(b) }{b-a}\ge f(t) \end{equation*} for any $t\in [a,b] $. In this paper we proved amongst other that \begin{equation*} \int _{a}^{b}u(t) df(t) \ge \frac{f(b) -f(a) }{b-a}\int _{a}^{b}u(t) dt \end{equation*} provided that $u\colon [ a,b] \rightarrow \mathbb {R}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb {R}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.
We say that the function $f\colon [a,b] \rightarrow \mathbb {R}$ is under the chord if \begin{equation*} \frac{\left( b-t\right) f(a) +\left( t-a\right) f(b) }{b-a}\ge f(t) \end{equation*} for any $t\in [a,b] $. In this paper we proved amongst other that \begin{equation*} \int _{a}^{b}u(t) df(t) \ge \frac{f(b) -f(a) }{b-a}\int _{a}^{b}u(t) dt \end{equation*} provided that $u\colon [ a,b] \rightarrow \mathbb {R}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb {R}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.
Classification : 26D15, 47A63
Keywords: Fejér inequality; functions of bounded variation; monotonic functions; total variation; selfadjoint operators
@article{AUPO_2014_53_1_a3,
     author = {Dragomir, Silvestru S.},
     title = {Inequalities for the {Riemann{\textendash}Stieltjes} {Integral} of under the {Chord} {Functions} with {Applications}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {45--64},
     year = {2014},
     volume = {53},
     number = {1},
     mrnumber = {3331070},
     zbl = {1310.26019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a3/}
}
TY  - JOUR
AU  - Dragomir, Silvestru S.
TI  - Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 45
EP  - 64
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a3/
LA  - en
ID  - AUPO_2014_53_1_a3
ER  - 
%0 Journal Article
%A Dragomir, Silvestru S.
%T Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 45-64
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a3/
%G en
%F AUPO_2014_53_1_a3
Dragomir, Silvestru S. Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 45-64. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a3/

[1] Azpeitia, A. G.: Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28, 1 (1994), 7–12. | MR | Zbl

[2] Beckenbach, E. F., Bellman, R.: Inequalities. 4th Edition, Springer-Verlag, Berlin, 1983. | MR | Zbl

[3] Cerone, P., Dragomir, S. S., Roumeliotis, J., Šunde, J.: A new generalization of the trapezoid formula for $n$-time differentiable mappings and applications. Demonstratio Math. 33, 4 (2000), 719–736. | MR | Zbl

[4] Dragomir, S. S.: A mapping in connection to Hadamard’s inequalities. An. Öster. Akad. Wiss. Math.-Natur. (Wien) 128 (1991), 17–20, MR 934:26032. ZBL No. 747:26015. | MR | Zbl

[5] Dragomir, S. S.: Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 167 (1992), 49–56, MR:934:26038, ZBL No. 758:26014. | DOI | MR | Zbl

[6] Dragomir, S. S.: On Hadamard’s inequalities for convex functions. Mat. Balkanica 6 (1992), 215–222, MR: 934:26033. | MR | Zbl

[7] Dragomir, S. S.: An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3, 3 (2002), Article 35, 1–8. | MR | Zbl

[8] Dragomir, S. S.: Inequalities of Grüss type for the Stieltjes integral and applications. Kragujevac J. Math. 26 (2004), 89–122. | MR | Zbl

[9] Dragomir, S. S.: Bounds for the normalized Jensen functional. Bull. Austral. Math. Soc. 74, 3 (2006), 471–476. | DOI | MR

[10] Dragomir, S. S.: Inequalities for Stieltjes integrals with convex integrators and applications. Appl. Math. Lett. 20 (2007), 123–130. | DOI | MR | Zbl

[11] Dragomir, S. S., Gomm, I.: Some applications of Fejér’s inequality for convex functions (I). Austral. J. Math. Anal. Appl. 10, 1 (2013), Article 9, 1–11. | MR | Zbl

[12] Dragomir, S. S., Milošević, D. S., Sándor, J.: On some refinements of Hadamard’s inequalities and applications. Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24. | MR | Zbl

[13] Dragomir, S. S., Pearce, C. E. M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000, [online] http://rgmia.org/monographs/hermite_hadamard.html

[14] Dragomir, S. S., Pearce, C. E. M.: Some inequalities relating to upper and lower bounds for the Riemann–Stieltjes integral. J. Math. Inequal. 3, 4 (2009), 607–616. | DOI | MR | Zbl

[15] Féjer, L.: Über die Fourierreihen, II. Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 369–390, (in Hungarian).

[16] Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115, 2 (2002), 260–288. | DOI | MR | Zbl

[17] Helmberg, G.: Introduction to Spectral Theory in Hilbert Space. John Wiley & Sons, Inc., New York, 1969. | MR | Zbl

[18] Kikianty, E., Dragomir, S. S.: Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13, 1 (2010), 1–32. | MR | Zbl

[19] Merkle, M.: Remarks on Ostrowski’s and Hadamard’s inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. | MR | Zbl

[20] Mercer, P. R.: Hadamard’s inequality and trapezoid rules for the Riemann–Stieltjes integral. J. Math. Anal. Applic. 344 (2008), 921–926. | DOI | MR | Zbl

[21] Mitrinović, D. S., Lacković, I. B.: Hermite and convexity. Aequationes Math. 28 (1985), 229–232. | DOI | MR | Zbl

[22] Pearce, C. E. M., Rubinov, A. M.: P-functions, quasi-convex functions, and Hadamard type inequalities. J. Math. Anal. Appl. 240, 1 (1999), 92–104. | DOI | MR | Zbl

[23] Pečarić, J., Vukelić, A.: Hadamard and Dragomir–Agarwal inequalities, the Euler formulae and convex functions. Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, 105–137. | MR | Zbl

[24] Pečarić, J., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press Inc., San Diego, 1992. | MR | Zbl

[25] Toader, G.: Superadditivity and Hermite-Hadamard’s inequalities. Studia Univ. Babeş-Bolyai Math. 39, 2 (1994), 27–32. | MR | Zbl

[26] Yand, G.-S., Hong, M.-C.: A note on Hadamard’s inequality. Tamkang J. Math. 28, 1 (1997), 33–37.

[27] Yand, G.-S., Tseng, K.-L.: On certain integral inequalities related to Hermite–Hadamard inequalities. J. Math. Anal. Appl. 239, 1 (1999), 180–187. | DOI | MR