Ulam Stabilities for Partial Impulsive Fractional Differential Equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 5-17 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
Classification : 26A33, 34A37, 34G20
Keywords: fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability
@article{AUPO_2014_53_1_a0,
     author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and Nieto, Juan J.},
     title = {Ulam {Stabilities} for {Partial} {Impulsive} {Fractional} {Differential} {Equations}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--17},
     year = {2014},
     volume = {53},
     number = {1},
     mrnumber = {3329227},
     zbl = {06416938},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Benchohra, Mouffak
AU  - Nieto, Juan J.
TI  - Ulam Stabilities for Partial Impulsive Fractional Differential Equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 5
EP  - 17
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/
LA  - en
ID  - AUPO_2014_53_1_a0
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%A Nieto, Juan J.
%T Ulam Stabilities for Partial Impulsive Fractional Differential Equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 5-17
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/
%G en
%F AUPO_2014_53_1_a0
Abbas, Saïd; Benchohra, Mouffak; Nieto, Juan J. Ulam Stabilities for Partial Impulsive Fractional Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/

[1] Abbas, S., Baleanu, D., Benchohra, M.: Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. | DOI | MR | Zbl

[2] Abbas, S., Benchohra, M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. | MR | Zbl

[3] Abbas, S., Benchohra, M.: Fractional order partial hyperbolic differential equations involving Caputo’s derivative. Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. | MR | Zbl

[4] Abbas, S., Benchohra, M.: Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations. Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. | MR | Zbl

[5] Abbas, S., Benchohra, M., Cabada, A.: Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. 2012, 128 (2012), 1–15. | MR | Zbl

[6] Abbas, S., Benchohra, M., Górniewicz, L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. e-2010 (2010), 271–282, online. | MR | Zbl

[7] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Studies 20, 1 (2013), 1–10. | MR | Zbl

[8] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Developments in Mathematics 27, Springer, New York, 2012. | MR | Zbl

[9] Abbas, S., Benchohra, M., Vityuk, A. N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. | DOI | MR | Zbl

[10] Abbas, S., Benchohra, M., Zhou, Y.: Darboux problem for tractional order neutral functional partial hyperbolic differential equations. Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. | MR

[11] Ahmad, B., Nieto, J. J.: Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory 13 (2012), 329–336. | MR | Zbl

[12] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. | MR | Zbl

[13] Benchohra, M., Graef, J. R., Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87, 7 (2008), 851–863. | DOI | MR

[14] Bota-Boriceanu, M. F., Petrusel, A.: Ulam–Hyers stability for operatorial equations and inclusions. Analele Univ. I. Cuza Iasi 57 (2011), 65–74. | MR

[15] Cabada, A., Staněk, S.: Functional fractional boundary value problems with singular $\phi $-Laplacian. Appl. Math. Comput. 219 (2012), 1383–1390. | DOI | MR | Zbl

[16] Castro, L. P., Ramos, A.: Hyers–Ulam–Rassias stability for a class of Volterra integral equations. Banach J. Math. Anal. 3 (2009), 36–43. | DOI | MR

[17] Henry, D.: Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin–New York, 1989.

[18] Hilfer, R., R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | MR | Zbl

[19] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. 27 (1941), 222–224. | DOI | MR | Zbl

[20] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998. | MR | Zbl

[21] Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York, 2011. | MR | Zbl

[22] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. | MR | Zbl

[23] Kilbas, A. A., Marzan, S. A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84–89. | DOI | MR | Zbl

[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[25] Ortigueira, M. D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. | DOI | MR | Zbl

[26] Petru, T. P., Bota, M.-F.: Ulam-Hyers stabillity of operational inclusions in complete gauge spaces. Fixed Point Theory 13 (2012), 641–650. | MR

[27] Petru, T. P., Petrusel, A., Yao, J.-C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwanese J. Math. 15 (2011), 2169–2193. | MR | Zbl

[28] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl

[29] Rassias, Th. M.: On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297–300. | DOI | MR

[30] Rus, I. A.: Ulam stability of ordinary differential equations. Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. | MR | Zbl

[31] Rus, I. A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10 (2009), 305–320. | MR | Zbl

[32] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. | DOI | MR | Zbl

[33] Tarasov, V. E.: Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010. | MR | Zbl

[34] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Publishers, New York, 1968. | MR

[35] Vityuk, A. N., Golushkov, A. V.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 3 (2004), 318–325. | DOI | MR

[36] Wang, J., Fečkan, M., Zhou, Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 1 (2012), 258–264. | DOI | MR | Zbl

[37] Wang, J., Fečkan, M., Zhou, Y: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. | MR | Zbl

[38] Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. | DOI | MR

[39] Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. | DOI | MR | Zbl

[40] Wang, J., Zhou, Y.: Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 25, 4 (2012), 723–728. | DOI | MR | Zbl

[41] Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64 (2012), 3389–3405. | DOI | MR | Zbl

[42] Wei, W., Li, X., Li, X.: New stability results for fractional integral equation. Comput. Math. Appl. 64 (2012), 3468–3476. | DOI | MR | Zbl