Keywords: fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability
@article{AUPO_2014_53_1_a0,
author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and Nieto, Juan J.},
title = {Ulam {Stabilities} for {Partial} {Impulsive} {Fractional} {Differential} {Equations}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {5--17},
year = {2014},
volume = {53},
number = {1},
mrnumber = {3329227},
zbl = {06416938},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/}
}
TY - JOUR AU - Abbas, Saïd AU - Benchohra, Mouffak AU - Nieto, Juan J. TI - Ulam Stabilities for Partial Impulsive Fractional Differential Equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 5 EP - 17 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/ LA - en ID - AUPO_2014_53_1_a0 ER -
%0 Journal Article %A Abbas, Saïd %A Benchohra, Mouffak %A Nieto, Juan J. %T Ulam Stabilities for Partial Impulsive Fractional Differential Equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 5-17 %V 53 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/ %G en %F AUPO_2014_53_1_a0
Abbas, Saïd; Benchohra, Mouffak; Nieto, Juan J. Ulam Stabilities for Partial Impulsive Fractional Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/AUPO_2014_53_1_a0/
[1] Abbas, S., Baleanu, D., Benchohra, M.: Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. | DOI | MR | Zbl
[2] Abbas, S., Benchohra, M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. | MR | Zbl
[3] Abbas, S., Benchohra, M.: Fractional order partial hyperbolic differential equations involving Caputo’s derivative. Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. | MR | Zbl
[4] Abbas, S., Benchohra, M.: Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations. Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. | MR | Zbl
[5] Abbas, S., Benchohra, M., Cabada, A.: Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. 2012, 128 (2012), 1–15. | MR | Zbl
[6] Abbas, S., Benchohra, M., Górniewicz, L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. e-2010 (2010), 271–282, online. | MR | Zbl
[7] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Studies 20, 1 (2013), 1–10. | MR | Zbl
[8] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Developments in Mathematics 27, Springer, New York, 2012. | MR | Zbl
[9] Abbas, S., Benchohra, M., Vityuk, A. N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. | DOI | MR | Zbl
[10] Abbas, S., Benchohra, M., Zhou, Y.: Darboux problem for tractional order neutral functional partial hyperbolic differential equations. Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. | MR
[11] Ahmad, B., Nieto, J. J.: Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory 13 (2012), 329–336. | MR | Zbl
[12] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. | MR | Zbl
[13] Benchohra, M., Graef, J. R., Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87, 7 (2008), 851–863. | DOI | MR
[14] Bota-Boriceanu, M. F., Petrusel, A.: Ulam–Hyers stability for operatorial equations and inclusions. Analele Univ. I. Cuza Iasi 57 (2011), 65–74. | MR
[15] Cabada, A., Staněk, S.: Functional fractional boundary value problems with singular $\phi $-Laplacian. Appl. Math. Comput. 219 (2012), 1383–1390. | DOI | MR | Zbl
[16] Castro, L. P., Ramos, A.: Hyers–Ulam–Rassias stability for a class of Volterra integral equations. Banach J. Math. Anal. 3 (2009), 36–43. | DOI | MR
[17] Henry, D.: Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin–New York, 1989.
[18] Hilfer, R., R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | MR | Zbl
[19] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. 27 (1941), 222–224. | DOI | MR | Zbl
[20] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998. | MR | Zbl
[21] Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York, 2011. | MR | Zbl
[22] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. | MR | Zbl
[23] Kilbas, A. A., Marzan, S. A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84–89. | DOI | MR | Zbl
[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl
[25] Ortigueira, M. D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. | DOI | MR | Zbl
[26] Petru, T. P., Bota, M.-F.: Ulam-Hyers stabillity of operational inclusions in complete gauge spaces. Fixed Point Theory 13 (2012), 641–650. | MR
[27] Petru, T. P., Petrusel, A., Yao, J.-C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwanese J. Math. 15 (2011), 2169–2193. | MR | Zbl
[28] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl
[29] Rassias, Th. M.: On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297–300. | DOI | MR
[30] Rus, I. A.: Ulam stability of ordinary differential equations. Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. | MR | Zbl
[31] Rus, I. A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10 (2009), 305–320. | MR | Zbl
[32] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. | DOI | MR | Zbl
[33] Tarasov, V. E.: Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010. | MR | Zbl
[34] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Publishers, New York, 1968. | MR
[35] Vityuk, A. N., Golushkov, A. V.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 3 (2004), 318–325. | DOI | MR
[36] Wang, J., Fečkan, M., Zhou, Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 1 (2012), 258–264. | DOI | MR | Zbl
[37] Wang, J., Fečkan, M., Zhou, Y: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. | MR | Zbl
[38] Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. | DOI | MR
[39] Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. | DOI | MR | Zbl
[40] Wang, J., Zhou, Y.: Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 25, 4 (2012), 723–728. | DOI | MR | Zbl
[41] Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64 (2012), 3389–3405. | DOI | MR | Zbl
[42] Wei, W., Li, X., Li, X.: New stability results for fractional integral equation. Comput. Math. Appl. 64 (2012), 3468–3476. | DOI | MR | Zbl