Keywords: Wiener process; Brownian bridge; symmetric process; sequential methods
@article{AUPO_2013_52_2_a9,
author = {Stib\r{u}rek, David},
title = {Statistical {Inference} about the {Drift} {Parameter} in {Stochastic} {Processes}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {107--120},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202384},
zbl = {06296019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a9/}
}
TY - JOUR AU - Stibůrek, David TI - Statistical Inference about the Drift Parameter in Stochastic Processes JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 107 EP - 120 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a9/ LA - en ID - AUPO_2013_52_2_a9 ER -
%0 Journal Article %A Stibůrek, David %T Statistical Inference about the Drift Parameter in Stochastic Processes %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 107-120 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a9/ %G en %F AUPO_2013_52_2_a9
Stibůrek, David. Statistical Inference about the Drift Parameter in Stochastic Processes. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 107-120. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a9/
[1] Billingsley, P.: Convergence of Probability Measures. Second Edition, Wiley, New York, 1999. | MR | Zbl
[2] Csörgő, M., Révész, P.: Strong approximations in probability and statistics. Academic Press, New York, 1981. | MR | Zbl
[3] Horrocks, J., Thompson, M. E.: Modeling Event Times with Multiple Outcomes Using the Wiener Process with Drift. Lifetime Data Analysis 10 (2004), 29–49. | DOI | MR | Zbl
[4] Liptser, R. S., Shiryaev, A. N.: Statistics of Random Processes II. Applications. Springer, New York, 2000. | MR
[5] Mörter, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge, 2010. | MR
[6] Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin, 2003. | MR | Zbl
[7] Redekop, J.: Extreme-value distributions for generalizations of Brownian motion. Ph.D. thesis, University of Waterloo, Waterloo, 1995. | MR
[8] Seshadri, V.: The Inverse Gaussian Distribution: Statistical Theory and Applications. Springer, New York, 1999. | MR | Zbl
[9] Steele, J. M.: Stochastic Calculus and Financial Applications. Springer, New York, 2001. | MR | Zbl