On the Kluvánek Construction of the Lebesgue Integral
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 99-105 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

I. Kluvánek suggested to built the Lebesgue integral on a compact interval in the real line by the help of the length of intervals only. In the paper a modification of the Kluvánek construction is presented applicable to abstract spaces, too.
I. Kluvánek suggested to built the Lebesgue integral on a compact interval in the real line by the help of the length of intervals only. In the paper a modification of the Kluvánek construction is presented applicable to abstract spaces, too.
Classification : 28A25
Keywords: Lebesgue integral; rings of sets; measures on compact interval
@article{AUPO_2013_52_2_a8,
     author = {Rie\v{c}an, Beloslav},
     title = {On the {Kluv\'anek} {Construction} of the {Lebesgue} {Integral}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {99--105},
     year = {2013},
     volume = {52},
     number = {2},
     mrnumber = {3202383},
     zbl = {06296018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a8/}
}
TY  - JOUR
AU  - Riečan, Beloslav
TI  - On the Kluvánek Construction of the Lebesgue Integral
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 99
EP  - 105
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a8/
LA  - en
ID  - AUPO_2013_52_2_a8
ER  - 
%0 Journal Article
%A Riečan, Beloslav
%T On the Kluvánek Construction of the Lebesgue Integral
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 99-105
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a8/
%G en
%F AUPO_2013_52_2_a8
Riečan, Beloslav. On the Kluvánek Construction of the Lebesgue Integral. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 99-105. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a8/

[1] Boccuto A., Riečan B., Vrábelová M.: Kurzweil–Henstock Integral in Riesz Spaces. Betham, 2009.

[2] Kluvánek, I.: Archimedes was right. Elemente der Mathematik 42, 3 (1987), 51–82. | MR | Zbl

[3] Kluvánek, I.: Archimedes was right. Elemente der Mathematik 42, 4 (1987), 83–114. | MR | Zbl

[4] Kluvánek, I.: Integral Calculus. UK, Ružomberok, 2011 (in Slovak).

[5] Riečan, B.: On Probability and Measure. Alfa, Bratislava, 1971 (in Slovak).

[6] Riečan, B., Neubrunn T.: Integral, Measure, and Ordering. Kluwer, Dordrecht, 1997. | MR | Zbl

[7] Riečan, B., Tkáčik, Š.: A note on the Kluvánek integral. Tatra Mt. Math. Publ 49 (2011), 59–65. | MR | Zbl

[8] Šipoš, J.: Integral representation of nonlinear functionals. Math. Slovaca 29 (1979), 333–346. | MR