Covariance Structure of Principal Components for Three-Part Compositional Data
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 61-69
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Statistical analysis of compositional data, multivariate observations carrying only relative information (proportions, percentages), should be performed only in orthonormal coordinates with respect to the Aitchison geometry on the simplex. In case of three-part compositions it is possible to decompose the covariance structure of the well-known principal components using variances of log-ratios of the original parts. They seem to be helpful for the interpretation of these special orthonormal coordinates. Theoretical results are applied to real-world data containing relative structure of landscape use in German regions.
Statistical analysis of compositional data, multivariate observations carrying only relative information (proportions, percentages), should be performed only in orthonormal coordinates with respect to the Aitchison geometry on the simplex. In case of three-part compositions it is possible to decompose the covariance structure of the well-known principal components using variances of log-ratios of the original parts. They seem to be helpful for the interpretation of these special orthonormal coordinates. Theoretical results are applied to real-world data containing relative structure of landscape use in German regions.
Classification :
15A18, 62H25, 62H99, 62J10
Keywords: compositional data; covariance structure; principal components; log-contrasts
Keywords: compositional data; covariance structure; principal components; log-contrasts
@article{AUPO_2013_52_2_a5,
author = {Hr\r{u}zov\'a, Kl\'ara and Hron, Karel and Rypka, Miroslav and Fi\v{s}erov\'a, Eva},
title = {Covariance {Structure} of {Principal} {Components} for {Three-Part} {Compositional} {Data}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {61--69},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202380},
zbl = {06296015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/}
}
TY - JOUR AU - Hrůzová, Klára AU - Hron, Karel AU - Rypka, Miroslav AU - Fišerová, Eva TI - Covariance Structure of Principal Components for Three-Part Compositional Data JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 61 EP - 69 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/ LA - en ID - AUPO_2013_52_2_a5 ER -
%0 Journal Article %A Hrůzová, Klára %A Hron, Karel %A Rypka, Miroslav %A Fišerová, Eva %T Covariance Structure of Principal Components for Three-Part Compositional Data %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 61-69 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/ %G en %F AUPO_2013_52_2_a5
Hrůzová, Klára; Hron, Karel; Rypka, Miroslav; Fišerová, Eva. Covariance Structure of Principal Components for Three-Part Compositional Data. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 61-69. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/