Keywords: compositional data; covariance structure; principal components; log-contrasts
@article{AUPO_2013_52_2_a5,
author = {Hr\r{u}zov\'a, Kl\'ara and Hron, Karel and Rypka, Miroslav and Fi\v{s}erov\'a, Eva},
title = {Covariance {Structure} of {Principal} {Components} for {Three-Part} {Compositional} {Data}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {61--69},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202380},
zbl = {06296015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/}
}
TY - JOUR AU - Hrůzová, Klára AU - Hron, Karel AU - Rypka, Miroslav AU - Fišerová, Eva TI - Covariance Structure of Principal Components for Three-Part Compositional Data JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 61 EP - 69 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/ LA - en ID - AUPO_2013_52_2_a5 ER -
%0 Journal Article %A Hrůzová, Klára %A Hron, Karel %A Rypka, Miroslav %A Fišerová, Eva %T Covariance Structure of Principal Components for Three-Part Compositional Data %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 61-69 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/ %G en %F AUPO_2013_52_2_a5
Hrůzová, Klára; Hron, Karel; Rypka, Miroslav; Fišerová, Eva. Covariance Structure of Principal Components for Three-Part Compositional Data. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 61-69. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a5/
[1] Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986. | MR | Zbl
[2] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35 (2003), 279–300. | DOI | MR
[3] Egozcue, J. J., Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis. Math. Geol. 37 (2005), 795–828. | DOI | MR | Zbl
[4] Filzmoser, P., Hron, K.: Robustness for compositional data. In: Becker, C., Fried, R., Kuhnt, S. (eds.): Robustness and complex data structures, Springer, Heidelberg, 2013, 117–131. | MR
[5] Fišerová, E., Hron, K.: On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 43 (2011), 455–468. | DOI
[6] Fišerová, E., Hron, K.: Statistical inference in orthogonal regression for three-part compositional data using a linear model with type-II constraints. Communications in Statistics – Theory and Methods 41 (2012), 2367–2385. | MR | Zbl
[7] Golub, G. H.: Modified matrix eigenvalue problems. SIAM Review 15 (1973), 318–334. | DOI | MR | Zbl
[8] Pawlowsky-Glahn, V., Buccianti, A.: Compositional data analysis: Theory and applications. Wiley, Chichester, 2011. | MR
[9] R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2013.
[10] Härdle, W. K., Simar, L.: Applied Multivariate Statistical Analysis. Springer-Verlag, Berlin, Heidelberg, 2012. | MR | Zbl
[11] Jackson, J. D., Dunlevy, J. A.: Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences. J. Roy. Statist. Soc. Ser. D (The Statistician) 37, 1 (1988), 7–14.
[12] Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen: Kreiszahlen: Ausgewählte Regional Daten für Deutschland. Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen, Hannover, 2012.