Two-sided Tolerance Intervals in a Simple Linear Regression
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 31-41
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Numerical results for a simple linear regression indicate that the non-simultaneous two-sided tolerance intervals nearly satisfy the condition of multiple-use confidence intervals, see Lee and Mathew (2002), but the numerical computation of the limits of the multiple-use confidence intervals is needed. We modified the Lieberman–Miller method (1963) for computing the simultaneous two-sided tolerance intervals in a simple linear regression with independent normally distributed errors. The suggested tolerance intervals are the narrowest of all the known simultaneous two-sided tolerance intervals. The computation of the multiple-use confidence intervals based on the new simultaneous two-sided tolerance intervals is simple and fast.
Numerical results for a simple linear regression indicate that the non-simultaneous two-sided tolerance intervals nearly satisfy the condition of multiple-use confidence intervals, see Lee and Mathew (2002), but the numerical computation of the limits of the multiple-use confidence intervals is needed. We modified the Lieberman–Miller method (1963) for computing the simultaneous two-sided tolerance intervals in a simple linear regression with independent normally distributed errors. The suggested tolerance intervals are the narrowest of all the known simultaneous two-sided tolerance intervals. The computation of the multiple-use confidence intervals based on the new simultaneous two-sided tolerance intervals is simple and fast.
Classification :
62F25, 62J05
Keywords: multiple-use confidence interval; simultaneous two-sided tolerance interval
Keywords: multiple-use confidence interval; simultaneous two-sided tolerance interval
@article{AUPO_2013_52_2_a2,
author = {Chvostekov\'a, Martina},
title = {Two-sided {Tolerance} {Intervals} in a {Simple} {Linear} {Regression}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {31--41},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202377},
zbl = {06296012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a2/}
}
TY - JOUR AU - Chvosteková, Martina TI - Two-sided Tolerance Intervals in a Simple Linear Regression JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 31 EP - 41 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a2/ LA - en ID - AUPO_2013_52_2_a2 ER -
%0 Journal Article %A Chvosteková, Martina %T Two-sided Tolerance Intervals in a Simple Linear Regression %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 31-41 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a2/ %G en %F AUPO_2013_52_2_a2
Chvosteková, Martina. Two-sided Tolerance Intervals in a Simple Linear Regression. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 31-41. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a2/