A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 131-143 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.
The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.
Classification : 62-04, 62E15
Keywords: noncentral $t$-distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm
@article{AUPO_2013_52_2_a11,
     author = {Witkovsk\'y, Viktor},
     title = {A {Note} on {Computing} {Extreme} {Tail} {Probabilities} of the {Noncentral} $t${-Distribution} with {Large} {Noncentrality} {Parameter}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {131--143},
     year = {2013},
     volume = {52},
     number = {2},
     mrnumber = {3202386},
     zbl = {06296021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a11/}
}
TY  - JOUR
AU  - Witkovský, Viktor
TI  - A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 131
EP  - 143
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a11/
LA  - en
ID  - AUPO_2013_52_2_a11
ER  - 
%0 Journal Article
%A Witkovský, Viktor
%T A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 131-143
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a11/
%G en
%F AUPO_2013_52_2_a11
Witkovský, Viktor. A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a11/

[1] Abramowitz M., Stegun I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Tenth Edition, National Bureau of Standards, 1972. | Zbl

[2] Airey, J. R., Irwin, J. O., Fisher, R. A.: Introduction to Tables of $Hh$ Functions. British Association for the Advancement of Science, Mathematical Tables 1, XXIV–XXXV, 1931.

[3] Benton D., Krishnamoorthy K.: Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral $t$ and the distribution of the square of the sample multiple correlation coefficient. Computational Statistics & Data Analysis 43 (2003), 249–267. | DOI | MR

[4] Bristow, P. A., Maddock, J.: DistExplorer: Statistical Distribution Explorer. Boost Software License, Edition: Version 1.0., 2012 http://sourceforge.net/projects/distexplorer/

[5] Guenther, W. C.: Evaluation of probabilities for the noncentral distributions and the difference of two $t$ variables with a desk calculator. Journal of Statistical Computation and Simulation 6 (1978), 199–206. | DOI

[6] Hahn, G. J., Meeker, G. J.: Statistical Intervals: A Guide for Practitioners. John Wiley & Sons, New York, 1991. | Zbl

[7] Holoborodko P.: Multiprecision Computing Toolbox for MATLAB. Advanpix, Yokohama. Edition: Version 3.4.3, 2013 http://www.advanpix.com

[8] Inglot, T.: Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics 30 (2010), 339–351. | MR | Zbl

[9] Inglot, T., Ledwina, T.: Asymptotic optimality of a new adaptive test in regression model. Annales de l’Institut Henri Poincaré 42 (2006), 579–590. | DOI | MR

[10] Janiga, I., Garaj, I.: One-sided tolerance factors of normal distributions with unknown mean and variability. Measurement Science Review 8 (2006), 12–16.

[11] Johnson, N. L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Volume 2. Second Edition, John Wiley & Sons, New York, 1995. | MR

[12] Kim, J.: Efficient Confidence Inteval Methodologies for the Noncentrality Parameters of the Noncentral $T$-Distributions. PhD Thesis, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 2007. | MR

[13] Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley & Sons, New York, 2009. | MR

[14] Lenth, R. V.: Algorithm AS 243 – Cumulative distribution function of the non-central $t$ distribution. Applied Statistics 38 (1989), 185–189. | DOI

[15] Maddock, J., Bristow, P. A., Holin, H., Zhang, X., Lalande, B., Rade, J., Sewani, G., van den Berg, T., Sobotta, B.: Noncentral $T$ Distribution. Boost C++ Libraries, Edition: Version 1.53.0, 2012 http://www.boost.org

[16] The MathWorks Inc.: MATLAB Edition: Version 8.0.0.783 (R2012b). Natick, Massachusetts, 2012 http://www.mathworks.com

[17] R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Edition: Version 3.0.0, Vienna, Austria, 2013 http://www.R-project.org

[18] SAS Institute Inc.: PROBT Function. SAS(R) 9.3 Functions and CALL Routines: Reference. 2013 http://support.sas.com/

[19] Student: The probable error of a mean. Biometrika 6 (1908), 1–25. | DOI

[20] Wolfram Research, Inc.: Mathematica Edition: Version 9.0. Wolfram Research, Inc., Champaign, Illinois, 2013 http://www.wolfram.com/mathematica/