Keywords: data depth; classification; k-nearest neighbour; skewed normal distribution
@article{AUPO_2013_52_2_a10,
author = {Venc\'alek, Ond\v{r}ej},
title = {$k${-Depth-nearest} {Neighbour} {Method} and its {Performance} on {Skew-normal} {Distributons}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {121--129},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202385},
zbl = {06296020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a10/}
}
TY - JOUR AU - Vencálek, Ondřej TI - $k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 121 EP - 129 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a10/ LA - en ID - AUPO_2013_52_2_a10 ER -
%0 Journal Article %A Vencálek, Ondřej %T $k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 121-129 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a10/ %G en %F AUPO_2013_52_2_a10
Vencálek, Ondřej. $k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 121-129. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a10/
[1] Azzalini, A., Della Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 4 (1996), 715–726. | DOI | MR
[2] Azzalini, A. R: package sn: The skew-normal and skew-t distributions (version 0.4-6). http://azzalini.stat.unipd.it/SN, 2006.
[3] Hlubinka, D.: Výpravy do hlubin dat. In: Antoch, J., Dohnal, G. (eds.): Sborník prací 15. letní školy JČMF ROBUST 2008, JČMF, Praha, 2009, 97–130, (in czech).
[4] Hubert, M., van der Veeken, S.: Fast and robust classifiers adjusted for skewness. In: Lechevallier, Y., Saporta, G. (eds.): COMPSTAT 2010: proceedings in computational statistics: 19th symposium held in Paris, France Springer, Heidelberg, 2010, 1135–1142.
[5] Li, J., Cuesta-Albertos, J. A., Liu, R. Y.: DD-classifier: nonparametric classification procedure based on DD-plot. Journal of the American Statistical Association 104, 498 (2012), 737–753. | DOI | MR | Zbl
[6] Paindaveine, D., Van Bever, G.: Nonparametrically consistent depth-based classifiers. arXiv preprint arXiv:1204.2996, 2012.
[7] Vencálek, O.: Concept of Data Depth and Its Applications. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50, 2 (2011), 111–119. | MR | Zbl
[8] Vencálek, O.: Weighted data depth and depth based classification. PhD Thesis, MFF UK, Praha, 2011.
[9] Vencálek, O.: New depth-based modification of the $k$-nearest neighbour method. Informační bulletin České statistické společnosti, (2013), (to appear).
[10] Zuo, Y., Serfling, R.: General notion of statistical depth function. Annals of Statistics 28 (2000), 461–482. | DOI | MR