Keywords: Cox proportional regression model; Breslow method; delayed entry; observation study; mitral valve
@article{AUPO_2013_52_2_a1,
author = {B\v{e}la\v{s}kov\'a, Silvie and Fi\v{s}erov\'a, Eva and Krupi\v{c}kov\'a, Sylvia},
title = {Study of {Bootstrap} {Estimates} in {Cox} {Regression} {Model} with {Delayed} {Entry}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {21--30},
year = {2013},
volume = {52},
number = {2},
mrnumber = {3202376},
zbl = {06296011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a1/}
}
TY - JOUR AU - Bělašková, Silvie AU - Fišerová, Eva AU - Krupičková, Sylvia TI - Study of Bootstrap Estimates in Cox Regression Model with Delayed Entry JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 21 EP - 30 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a1/ LA - en ID - AUPO_2013_52_2_a1 ER -
%0 Journal Article %A Bělašková, Silvie %A Fišerová, Eva %A Krupičková, Sylvia %T Study of Bootstrap Estimates in Cox Regression Model with Delayed Entry %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 21-30 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a1/ %G en %F AUPO_2013_52_2_a1
Bělašková, Silvie; Fišerová, Eva; Krupičková, Sylvia. Study of Bootstrap Estimates in Cox Regression Model with Delayed Entry. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a1/
[1] Allison, P. D., SAS Institute: Survival Analysis Using the Sas System: A Practical Guide. SAS Institute Inc., Cary, NC, 1995 http://books.google.cz/books?id=xaBRKg5mtoIC
[2] Breslow, N. E.: Discussion of Professor Cox’s paper. J. Royal Stat. Soc. B 34 (1972), 216–217. | MR
[3] Breslow, N. E.: Covariance analysis of censored survival data. Biometrics 30 (1974), 89–99. | DOI
[4] Cassell, D. L.: Don’t Be Loopy: Re-Sampling and Simulation the SAS Way. In: Proceedings of the 2007 SAS Global Forum, SAS Institute Inc., Cary, NC, 2007.
[5] Cary, N. C., SAS Institute Inc.: Users Guide. SAS Institute Inc. SAS/STAT 9.2, Cary, NC, 2008.
[6] Collett, D.: Modeling Survival Data in Medical Research. Chapman & Hall, London, 1994.
[7] Cox, D. R.: Regression models and life tables. Journal of the Royal Statistical Society, Series B 20 (1972), 187–220. | MR | Zbl
[8] Cox, D. R., Oakes, D.: Analysis of Survival Data. Chapman & Hall, London, 1984. | MR
[9] Edgington, E. S.: Randomization Tests. M. Dekker, New York, 1995. | Zbl
[10] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman & Hall, New York, 1993. | MR | Zbl
[11] Jun Qian, Bin Li, Ping-yan Chen: Generating Survival Data in the Simulation Studies of Cox Model. In: Information and Computing (ICIC) Third International Conference on, 4 (2010), 93–96.
[12] Kaplan, E. L., Meier, P.: Non-parametric estimation from incomplete observations. J. Am. Stat. Assoc. 53 (1958), 457–481. | DOI | MR
[13] Klein, J. P., Moeschberger, M. L.: Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York, 1997. | Zbl
[14] Kleinbaum, D. G., Klien, M.: Survival Analysis: A Self-Learning Text. Second Edition, Springer, New York, 2005. | MR
[15] Kongerud, J., Samuelsen, S. O.: A longitudinal study of respiratory symptoms in aluminum potroom workers. American Review of Respiratory Diseases 144 (1991), 10–16. | DOI
[16] Li Ji: Cox Model Analysis with the Dependently Left Truncated Data. Mathematics Theses, Paper 88, Georgia State University, Atlanta, GA, 2010.
[17] Su Y. R., Wang J. L.: Modeling left-truncated and right-censored survival data with longitudinal covariates. The Annals of Statistics 40, 3 (2012), 1465–1488. | DOI | MR