Nonlinear Rescaling Method and Self-concordant Functions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 5-19 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is recommended as a suitable nonlinear rescaling function.
Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is recommended as a suitable nonlinear rescaling function.
Classification : 46N10, 47N10, 65K05, 90C06, 90C30
Keywords: convex optimization; nonlinear rescaling method; self-concordant functions
@article{AUPO_2013_52_2_a0,
     author = {Andr\'a\v{s}ik, Richard},
     title = {Nonlinear {Rescaling} {Method} and {Self-concordant} {Functions}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--19},
     year = {2013},
     volume = {52},
     number = {2},
     mrnumber = {3202375},
     zbl = {06296010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a0/}
}
TY  - JOUR
AU  - Andrášik, Richard
TI  - Nonlinear Rescaling Method and Self-concordant Functions
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 5
EP  - 19
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a0/
LA  - en
ID  - AUPO_2013_52_2_a0
ER  - 
%0 Journal Article
%A Andrášik, Richard
%T Nonlinear Rescaling Method and Self-concordant Functions
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 5-19
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a0/
%G en
%F AUPO_2013_52_2_a0
Andrášik, Richard. Nonlinear Rescaling Method and Self-concordant Functions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/AUPO_2013_52_2_a0/

[1] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, 2004. | MR | Zbl

[2] Griva, I., Nash, S. G., Sofer, A.: Linear and Nonlinear Optimization. Second edition, SIAM, Philadelphia, 2009. | MR | Zbl

[3] Kučera, R., Machalová, J., Netuka, H., Ženčák, P.: An interior-point algorithm for the minimization arising from 3D contact problems with friction. Optimization Methods and Software, (2013), in press. | MR | Zbl

[4] Nocedal, J., Wright, S. J.: Numerical Optimization. Second edition, Springer, New York, 2006. | MR | Zbl

[5] Polyak, R.: Modified barrier functions (theory and methods). Mathematical Programming 54 (1992), 177–222. | DOI | MR | Zbl

[6] Polyak, R.: Log-Sigmoid Multipliers Method in Constrained Optimization. Annals of Operations Research 101 (2001), 427–460. | DOI | MR | Zbl

[7] Polyak, R.: Nonlinear rescaling vs. Smoothing Technique in Convex Optimization. Mathematical Programming 92A (2002), 197–235. | MR | Zbl

[8] Polyak, R.: Nonlinear Rescaling as Interior Quadratic Prox Method in Convex Optimization. Computational Optimization and Applications 35 (2006), 347–373. | DOI | MR | Zbl

[9] Polyak, R., Griva I.: Primal-Dual Nonlinear Rescaling Method for Convex Optimization. JOTA 122, 1 (2004), 111–156. | DOI | MR | Zbl

[10] Polyak, R., Griva, I.: Primal-Dual Nonlinear Rescaling Method with Dynamic Scaling Parameter Update. Mathematical Programming 106A (2006), 237–259. | MR | Zbl

[11] Polyak, R., Griva, I.: 1.5-Q-superlinear convergence of an exterior-point method for constrained optimization. Journal of Global Optimization 40, 4 (2008), 679–695. | DOI | MR | Zbl

[12] Polyak, R., Griva, I.: Proximal Point Nonlinear Rescaling Method for Convex Optimization. Numerical Algebra, Control and Optimization 1, 2 (2011), 283–299. | DOI | MR | Zbl

[13] Polyak, R., Teboulle, M.: Nonlinear Rescaling and Proximal-Like Methods in Convex Optimization. Mathematical programming 76 (1997), 265–284. | DOI | MR | Zbl