Interior and Closure Operators on Commutative Bounded Residuated Lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 121-134 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.
Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.
Classification : 03G10, 06A15, 06D35, 06F05
Keywords: residuated lattice; bounded integral residuated lattice; interior operator; closure operator
@article{AUPO_2013_52_1_a9,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i} and Svoboda, Zden\v{e}k},
     title = {Interior and {Closure} {Operators} on {Commutative} {Bounded} {Residuated} {Lattices}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {121--134},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202754},
     zbl = {06285759},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a9/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
AU  - Svoboda, Zdeněk
TI  - Interior and Closure Operators on Commutative Bounded Residuated Lattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 121
EP  - 134
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a9/
LA  - en
ID  - AUPO_2013_52_1_a9
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%A Svoboda, Zdeněk
%T Interior and Closure Operators on Commutative Bounded Residuated Lattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 121-134
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a9/
%G en
%F AUPO_2013_52_1_a9
Rachůnek, Jiří; Svoboda, Zdeněk. Interior and Closure Operators on Commutative Bounded Residuated Lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a9/

[1] Balbes, R., Dwinger, P.: Distributive Lattices. University Missouri Press, Columbia, 1974. | MR | Zbl

[2] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[3] Cignoli, R., Torrens, A.: Glivenko like theorems in natural expansions of BCK-logic. Math. Log. Quart. 50 (2004), 111–125. | DOI | MR | Zbl

[4] Ciungu, L. C.: Classes of residuated lattices. Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180–207. | MR | Zbl

[5] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded R$\ell $-monoids. Math. Slovaca 56 (2006), 487–500. | MR

[6] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids. Discrete Math. 306 (2006), 1317–1326. | DOI | MR | Zbl

[7] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271–288. | MR | Zbl

[8] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. | MR | Zbl

[9] Hájek, P.: Metamathematics of Fuzzy Logic. Springer, Dordrecht, 1998. | MR

[10] Jipsen, P., Montagna, A.: The Blok-Ferreirim theorem for normal GBL-algebras and its application. Algebra Universalis 60 (2009), 381–404. | DOI | MR | Zbl

[11] Jipsen, P., Tsinakis, C.: A Survey of Residuated Lattices. In: Ordered Algebraic Structures, Kluwer, Dordrecht, (2006), 19–56. | MR

[12] Rachůnek, J., Slezák, V.: Negation in bounded commutative DR$\ell $-monoids. Czechoslovak Math. J. 56 (2007), 755–763. | DOI

[13] Rachůnek, J., Švrček, F.: MV-algebras with additive closure operators. Acta Univ. Palacki. Olomouc., Fac. Rer. Nat., Math. 39 (2000), 183–189. | MR | Zbl

[14] Rachůnek, J., Švrček, F.: Interior and closure operators on bounded commutative residuated $\ell $-monoids. Discuss. Math., Gen. Alg. Appl. 28 (2008), 11–27. | DOI | MR | Zbl

[15] Sikorski, R.: Boolean Algebras. 2nd edition, Springer-Verlag, Berlin–Göttingen–Heidelbeg–New York, 1963. | Zbl