On Semi-Boolean-Like Algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 101-120
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf {A}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf {A}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.
In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf {A}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf {A}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.
Classification :
03C05, 06E75
Keywords: Boolean-like algebra; central element; noncommutative lattice theory
Keywords: Boolean-like algebra; central element; noncommutative lattice theory
@article{AUPO_2013_52_1_a8,
author = {Ledda, Antonio and Paoli, Francesco and Salibra, Antonino},
title = {On {Semi-Boolean-Like} {Algebras}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {101--120},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202753},
zbl = {06285758},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a8/}
}
TY - JOUR AU - Ledda, Antonio AU - Paoli, Francesco AU - Salibra, Antonino TI - On Semi-Boolean-Like Algebras JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 101 EP - 120 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a8/ LA - en ID - AUPO_2013_52_1_a8 ER -
%0 Journal Article %A Ledda, Antonio %A Paoli, Francesco %A Salibra, Antonino %T On Semi-Boolean-Like Algebras %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 101-120 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a8/ %G en %F AUPO_2013_52_1_a8
Ledda, Antonio; Paoli, Francesco; Salibra, Antonino. On Semi-Boolean-Like Algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 101-120. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a8/