Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 89-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$. This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.
The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$. This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.
Classification : 45G05, 47H30
Keywords: Wiener–Hopf operator; Hammerstein–Nemytskii equation; Caratheodory condition; one-parameter family of positive solutions; iteration; monotonic increasing and bounded solution
@article{AUPO_2013_52_1_a7,
     author = {Khachatryan, Aghavard Kh. and Khachatryan, Khachatur A.},
     title = {Hammerstein{\textendash}Nemytskii {Type} {Nonlinear} {Integral} {Equations} on {Half-line} in {Space} $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {89--100},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202752},
     zbl = {1290.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a7/}
}
TY  - JOUR
AU  - Khachatryan, Aghavard Kh.
AU  - Khachatryan, Khachatur A.
TI  - Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 89
EP  - 100
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a7/
LA  - en
ID  - AUPO_2013_52_1_a7
ER  - 
%0 Journal Article
%A Khachatryan, Aghavard Kh.
%A Khachatryan, Khachatur A.
%T Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 89-100
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a7/
%G en
%F AUPO_2013_52_1_a7
Khachatryan, Aghavard Kh.; Khachatryan, Khachatur A. Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space $L_1(0,+\infty )\cap L_{\infty }(0,+\infty )$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a7/

[1] Arabadjyan, L. G., Yengibaryan, N. B.: Convolution equations and nonlinear functional equations. Itogi nauki i teckniki, Math. Analysis 4 (1984), 175–242 (in Russian). | MR

[2] Gokhberg, I. Ts., Feldman, I. A.: Convolution Equations and Proections Methods of Solutions. Nauka, Moscow, 1971. | MR

[3] Khachatryan, A. Kh., Khachatryan, Kh. A.: Existence and uniqueness theorem for a Hammerstein nonlinear integral equation. Opuscula, Mathematica 31, 3 (2011), 393–398. | DOI | MR | Zbl

[4] Khachatryan, A. Kh., Khachatryan, Kh. A.: On solvability of a nonlinear problem in theory of income distribution. Eurasian Math. Jounal 2 (2011), 75–88. | MR | Zbl

[5] Khachatryan, Kh. A.: On one class of nonlinear integral equations with noncompact operator. J. Contemporary Math. Analysis 46, 2 (2011), 71–86. | MR

[6] Khachatryan, Kh. A.: Some classes of Urysohn nonlinear integral equations on half line. Docl. NAS Belarus 55, 1 (2011), 5–9. | MR

[7] Kolmogorov, A. N., Fomin, V. C.: Elements of Functions Theory and Functional Analysis. Nauka, Moscow, 1981 (in Russian).

[8] Lindley, D. V.: The theory of queue with a single sever. Proc. Cambridge Phil. Soc. 48 (1952), 277–289. | MR

[9] Milojevic, P. S.: A global description of solution to nonlinear perturbations of the Wiener–Hopf integral equations. El. Journal of Differential Equations 51 (2006), 1–14. | MR