Keywords: fixed point; common fixed point; 2-metric space; completeness
@article{AUPO_2013_52_1_a6,
author = {Dey, Debashis and Saha, Mantu},
title = {Common {Fixed} {Point} {Theorems} in a {Complete} 2-metric {Space}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {79--87},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202751},
zbl = {1285.54034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/}
}
TY - JOUR AU - Dey, Debashis AU - Saha, Mantu TI - Common Fixed Point Theorems in a Complete 2-metric Space JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 79 EP - 87 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/ LA - en ID - AUPO_2013_52_1_a6 ER -
%0 Journal Article %A Dey, Debashis %A Saha, Mantu %T Common Fixed Point Theorems in a Complete 2-metric Space %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 79-87 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/ %G en %F AUPO_2013_52_1_a6
Dey, Debashis; Saha, Mantu. Common Fixed Point Theorems in a Complete 2-metric Space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/
[1] Akram, M., Zafar, A. A., Siddiqui A. A.: A general class of contractions: $A$-contractions. Novi Sad J. Math. 38, 1 (2008), 25–33. | MR | Zbl
[2] Bianchini, R.: Su un problema di S.Reich riguardante la teori dei punti fissi. Boll. Un. Math. Ital. 5 (1972), 103–108. | MR
[3] Cho, Y. J., Khan, M. S., Singh, S. L.: Common fixed points of weakly commuting mappings. Univ. u Novom Sadu, Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 18, 1 (1988), 129–142. | MR | Zbl
[4] Delbosco, D.: An unified approach for the contractive mappings. Jnanabha 16 (1986), 1–11. | MR
[5] Fisher, B.: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinicia 11 (1983), 103–113. | MR | Zbl
[6] Gähler, S.: 2-metric Raume and ihre topologische strucktur. Math.Nachr. 26 (1963), 115–148. | DOI | MR
[7] Gähler, S: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235–244. | DOI
[8] Kannan, R.: Some results on fixed points–II. Amer. Math. Monthly 76, 4 (1969), 405–408. | DOI | MR | Zbl
[9] Khan, M. D.: A Study of Fixed Point Theorems. Doctoral Thesis, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, 1984.
[10] Naidu, S. V. R., Prasad, J. R.: Fixed points in 2- metric spaces. Indian J. Pure AppL. Math. 1, 8 (1986), 974–993.
[11] Reich, S.: Kannans fixed point theorem. Boll. Un. Math. Ital. 4 (1971), 1–11. | MR | Zbl