Common Fixed Point Theorems in a Complete 2-metric Space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 79-87 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and $A$-contraction type condition and then extend the theorem for a class of mappings.
In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and $A$-contraction type condition and then extend the theorem for a class of mappings.
Classification : 47H10, 54H25
Keywords: fixed point; common fixed point; 2-metric space; completeness
@article{AUPO_2013_52_1_a6,
     author = {Dey, Debashis and Saha, Mantu},
     title = {Common {Fixed} {Point} {Theorems} in a {Complete} 2-metric {Space}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {79--87},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202751},
     zbl = {1285.54034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/}
}
TY  - JOUR
AU  - Dey, Debashis
AU  - Saha, Mantu
TI  - Common Fixed Point Theorems in a Complete 2-metric Space
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 79
EP  - 87
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/
LA  - en
ID  - AUPO_2013_52_1_a6
ER  - 
%0 Journal Article
%A Dey, Debashis
%A Saha, Mantu
%T Common Fixed Point Theorems in a Complete 2-metric Space
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 79-87
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/
%G en
%F AUPO_2013_52_1_a6
Dey, Debashis; Saha, Mantu. Common Fixed Point Theorems in a Complete 2-metric Space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a6/

[1] Akram, M., Zafar, A. A., Siddiqui A. A.: A general class of contractions: $A$-contractions. Novi Sad J. Math. 38, 1 (2008), 25–33. | MR | Zbl

[2] Bianchini, R.: Su un problema di S.Reich riguardante la teori dei punti fissi. Boll. Un. Math. Ital. 5 (1972), 103–108. | MR

[3] Cho, Y. J., Khan, M. S., Singh, S. L.: Common fixed points of weakly commuting mappings. Univ. u Novom Sadu, Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 18, 1 (1988), 129–142. | MR | Zbl

[4] Delbosco, D.: An unified approach for the contractive mappings. Jnanabha 16 (1986), 1–11. | MR

[5] Fisher, B.: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinicia 11 (1983), 103–113. | MR | Zbl

[6] Gähler, S.: 2-metric Raume and ihre topologische strucktur. Math.Nachr. 26 (1963), 115–148. | DOI | MR

[7] Gähler, S: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235–244. | DOI

[8] Kannan, R.: Some results on fixed points–II. Amer. Math. Monthly 76, 4 (1969), 405–408. | DOI | MR | Zbl

[9] Khan, M. D.: A Study of Fixed Point Theorems. Doctoral Thesis, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, 1984.

[10] Naidu, S. V. R., Prasad, J. R.: Fixed points in 2- metric spaces. Indian J. Pure AppL. Math. 1, 8 (1986), 974–993.

[11] Reich, S.: Kannan’s fixed point theorem. Boll. Un. Math. Ital. 4 (1971), 1–11. | MR | Zbl