Varieties of Distributive Rotational Lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
Classification : 06B20, 06B75, 06D99
Keywords: rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
@article{AUPO_2013_52_1_a5,
     author = {Cz\'edli, G\'abor and Nagy, Ildik\'o V.},
     title = {Varieties of {Distributive} {Rotational} {Lattices}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {71--78},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202750},
     zbl = {06285755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/}
}
TY  - JOUR
AU  - Czédli, Gábor
AU  - Nagy, Ildikó V.
TI  - Varieties of Distributive Rotational Lattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 71
EP  - 78
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/
LA  - en
ID  - AUPO_2013_52_1_a5
ER  - 
%0 Journal Article
%A Czédli, Gábor
%A Nagy, Ildikó V.
%T Varieties of Distributive Rotational Lattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 71-78
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/
%G en
%F AUPO_2013_52_1_a5
Czédli, Gábor; Nagy, Ildikó V. Varieties of Distributive Rotational Lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/

[1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York–Berlin, 1981. The Millennium Edition: http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html | MR | Zbl

[2] Chajda, I., Czédli, G: How to generate the involution lattice of quasiorders?. Studia Sci. Math. Hungar. 32 (1996), 415–427. | MR | Zbl

[3] Chajda, I., Czédli, G., Halaš, R.: Independent joins of tolerance factorable varieties. Algebra Universalis 69 (2013), 83–92. | DOI | MR

[4] Czédli, G., Szabó, L.: Quasiorders of lattices versus pairs of congruences. Acta Sci. Math. (Szeged) 60 (1995), 207–211. | MR | Zbl

[5] Dziobiak, W., Ježek, J., Maróti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78 (2009), 253–261. | DOI | MR | Zbl

[6] Grätzer, G.:: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. | MR | Zbl

[7] Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43 (1991), 178–186. | DOI | MR | Zbl

[8] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. | MR

[9] Maróti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38 (1997), 238–265. | DOI | MR

[10] Nagy, I. V.: Minimal quasivarieties of semilattices over commutative groups. Algebra Universalis (to appear).

[11] Vetterlein, T.: Boolean algebras with an automorphism group: a framework for Łukasiewicz logic. J. Mult.-Val. Log. Soft Comput. 14 (2008), 51–67. | MR | Zbl