Keywords: rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
@article{AUPO_2013_52_1_a5,
author = {Cz\'edli, G\'abor and Nagy, Ildik\'o V.},
title = {Varieties of {Distributive} {Rotational} {Lattices}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {71--78},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202750},
zbl = {06285755},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/}
}
TY - JOUR AU - Czédli, Gábor AU - Nagy, Ildikó V. TI - Varieties of Distributive Rotational Lattices JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 71 EP - 78 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/ LA - en ID - AUPO_2013_52_1_a5 ER -
Czédli, Gábor; Nagy, Ildikó V. Varieties of Distributive Rotational Lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a5/
[1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York–Berlin, 1981. The Millennium Edition: http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html | MR | Zbl
[2] Chajda, I., Czédli, G: How to generate the involution lattice of quasiorders?. Studia Sci. Math. Hungar. 32 (1996), 415–427. | MR | Zbl
[3] Chajda, I., Czédli, G., Halaš, R.: Independent joins of tolerance factorable varieties. Algebra Universalis 69 (2013), 83–92. | DOI | MR
[4] Czédli, G., Szabó, L.: Quasiorders of lattices versus pairs of congruences. Acta Sci. Math. (Szeged) 60 (1995), 207–211. | MR | Zbl
[5] Dziobiak, W., Ježek, J., Maróti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78 (2009), 253–261. | DOI | MR | Zbl
[6] Grätzer, G.:: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. | MR | Zbl
[7] Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43 (1991), 178–186. | DOI | MR | Zbl
[8] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. | MR
[9] Maróti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38 (1997), 238–265. | DOI | MR
[10] Nagy, I. V.: Minimal quasivarieties of semilattices over commutative groups. Algebra Universalis (to appear).
[11] Vetterlein, T.: Boolean algebras with an automorphism group: a framework for Łukasiewicz logic. J. Mult.-Val. Log. Soft Comput. 14 (2008), 51–67. | MR | Zbl