Some Common Fixed Point Theorems in Menger Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 57-69
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we prove some common fixed point theorems for occasionally weakly compatible mappings in Menger spaces. An example is also given to illustrate the main result. As applications to our results, we obtain the corresponding fixed point theorems in metric spaces. Our results improve and extend many known results existing in the literature.
In this paper, we prove some common fixed point theorems for occasionally weakly compatible mappings in Menger spaces. An example is also given to illustrate the main result. As applications to our results, we obtain the corresponding fixed point theorems in metric spaces. Our results improve and extend many known results existing in the literature.
Classification :
47H10, 54H25
Keywords: Menger space; weakly compatible mappings; occasionally weakly compatible mappings; fixed point
Keywords: Menger space; weakly compatible mappings; occasionally weakly compatible mappings; fixed point
@article{AUPO_2013_52_1_a4,
author = {Chauhan, Sunny and Pant, B. D.},
title = {Some {Common} {Fixed} {Point} {Theorems} in {Menger} {Spaces}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {57--69},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202749},
zbl = {1285.54032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a4/}
}
TY - JOUR AU - Chauhan, Sunny AU - Pant, B. D. TI - Some Common Fixed Point Theorems in Menger Spaces JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 57 EP - 69 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a4/ LA - en ID - AUPO_2013_52_1_a4 ER -
Chauhan, Sunny; Pant, B. D. Some Common Fixed Point Theorems in Menger Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a4/