The Rings Which Can Be Recovered by Means of the Difference
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 49-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that to every Boolean ring $\mathcal {R}$ can be assigned a Boolean algebra $\mathcal {B}$ whose operations are term operations of $\mathcal {R}$. Then a symmetric difference of $\mathcal {B}$ together with the meet operation recover the original ring operations of $\mathcal {R}$. The aim of this paper is to show for what a ring $\mathcal {R}$ a similar construction is possible. Of course, we do not construct a Boolean algebra but only so-called lattice-like structure which was introduced and treated by the authors in a previous paper. In particular, we reached interesting results if the characteristic of the ring $\mathcal {R}$ is either an odd natural number or a power of 2.
It is well known that to every Boolean ring $\mathcal {R}$ can be assigned a Boolean algebra $\mathcal {B}$ whose operations are term operations of $\mathcal {R}$. Then a symmetric difference of $\mathcal {B}$ together with the meet operation recover the original ring operations of $\mathcal {R}$. The aim of this paper is to show for what a ring $\mathcal {R}$ a similar construction is possible. Of course, we do not construct a Boolean algebra but only so-called lattice-like structure which was introduced and treated by the authors in a previous paper. In particular, we reached interesting results if the characteristic of the ring $\mathcal {R}$ is either an odd natural number or a power of 2.
Classification : 06E20, 06E30, 13A99, 13B25
Keywords: Boolean ring; commutative ring; lattice-like structure; difference
@article{AUPO_2013_52_1_a3,
     author = {Chajda, Ivan and \v{S}vr\v{c}ek, Filip},
     title = {The {Rings} {Which} {Can} {Be} {Recovered} by {Means} of the {Difference}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {49--55},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202748},
     zbl = {06285753},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Švrček, Filip
TI  - The Rings Which Can Be Recovered by Means of the Difference
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 49
EP  - 55
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/
LA  - en
ID  - AUPO_2013_52_1_a3
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Švrček, Filip
%T The Rings Which Can Be Recovered by Means of the Difference
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 49-55
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/
%G en
%F AUPO_2013_52_1_a3
Chajda, Ivan; Švrček, Filip. The Rings Which Can Be Recovered by Means of the Difference. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/

[1] Birkhoff, G.: Lattice Theory. 3rd edition, AMS Colloq. Publ. 25, Providence, RI, 1979. | MR | Zbl

[2] Chajda, I.: Pseudosemirings induced by ortholattices. Czech. Math. J. 46 (2008), 405–411. | MR

[3] Chajda, I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. | MR | Zbl

[4] Chajda, I., Länger, H.: Ring-like operations in pseudocomplemented semilattices. Discuss. Math., Gen. Algebra Appl. 20 (2010), 87–95. | DOI | MR

[5] Chajda, I., Švrček, F.: Lattice-like structures derived from rings. In: Proc. of Salzburg Conference (AAA81), Contributions to General Algebra 20, J. Heyn, Klagenfurt, 2011. | MR

[6] Dorninger, D., Länger, H., Ma̧cyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232. | MR

[7] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289. | MR

[8] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures induced by Mackey’s probability function. Rep. Math. Phys. 43 (1999), 499–515. | DOI | MR

[9] Dorninger, D., Länger, H., Ma̧cyński, M.: Lattice properties of ring-like quantum logics. Intern. J. Theor. Phys. 39 (2000), 1015–1026. | DOI | MR

[10] Dorninger, D., Länger, H., Ma̧cyński, M.: Concepts of measures on ring-like quantum logics. Rep. Math. Phys. 47 (2001), 167–176. | DOI | MR

[11] Dorninger, D., Länger, H., Ma̧cyński, M.: Ring-like structures with unique symmetric difference related to quantum logic. Discuss. Math., Gen. Algebra Appl. 21 (2001), 239–253. | DOI | MR

[12] Länger, H.: Generalizations of the corresspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97–105. | MR