Keywords: Boolean ring; commutative ring; lattice-like structure; difference
@article{AUPO_2013_52_1_a3,
author = {Chajda, Ivan and \v{S}vr\v{c}ek, Filip},
title = {The {Rings} {Which} {Can} {Be} {Recovered} by {Means} of the {Difference}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {49--55},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202748},
zbl = {06285753},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/}
}
TY - JOUR AU - Chajda, Ivan AU - Švrček, Filip TI - The Rings Which Can Be Recovered by Means of the Difference JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 49 EP - 55 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/ LA - en ID - AUPO_2013_52_1_a3 ER -
%0 Journal Article %A Chajda, Ivan %A Švrček, Filip %T The Rings Which Can Be Recovered by Means of the Difference %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 49-55 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/ %G en %F AUPO_2013_52_1_a3
Chajda, Ivan; Švrček, Filip. The Rings Which Can Be Recovered by Means of the Difference. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a3/
[1] Birkhoff, G.: Lattice Theory. 3rd edition, AMS Colloq. Publ. 25, Providence, RI, 1979. | MR | Zbl
[2] Chajda, I.: Pseudosemirings induced by ortholattices. Czech. Math. J. 46 (2008), 405–411. | MR
[3] Chajda, I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. | MR | Zbl
[4] Chajda, I., Länger, H.: Ring-like operations in pseudocomplemented semilattices. Discuss. Math., Gen. Algebra Appl. 20 (2010), 87–95. | DOI | MR
[5] Chajda, I., Švrček, F.: Lattice-like structures derived from rings. In: Proc. of Salzburg Conference (AAA81), Contributions to General Algebra 20, J. Heyn, Klagenfurt, 2011. | MR
[6] Dorninger, D., Länger, H., Ma̧cyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232. | MR
[7] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289. | MR
[8] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures induced by Mackey’s probability function. Rep. Math. Phys. 43 (1999), 499–515. | DOI | MR
[9] Dorninger, D., Länger, H., Ma̧cyński, M.: Lattice properties of ring-like quantum logics. Intern. J. Theor. Phys. 39 (2000), 1015–1026. | DOI | MR
[10] Dorninger, D., Länger, H., Ma̧cyński, M.: Concepts of measures on ring-like quantum logics. Rep. Math. Phys. 47 (2001), 167–176. | DOI | MR
[11] Dorninger, D., Länger, H., Ma̧cyński, M.: Ring-like structures with unique symmetric difference related to quantum logic. Discuss. Math., Gen. Algebra Appl. 21 (2001), 239–253. | DOI | MR
[12] Länger, H.: Generalizations of the corresspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97–105. | MR