Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 35-48 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak g$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak g}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal O}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.
Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak g$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak g}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal O}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.
Classification : 22E10, 22E15, 22E45, 32M05, 32M10, 32M15, 81S10
Keywords: quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group
@article{AUPO_2013_52_1_a2,
     author = {Cahen, Benjamin},
     title = {Global {Parametrization} of {Scalar} {Holomorphic} {Coadjoint} {Orbits} of a {Quasi-Hermitian} {Lie} {Group}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {35--48},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202747},
     zbl = {06285752},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/}
}
TY  - JOUR
AU  - Cahen, Benjamin
TI  - Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 35
EP  - 48
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/
LA  - en
ID  - AUPO_2013_52_1_a2
ER  - 
%0 Journal Article
%A Cahen, Benjamin
%T Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 35-48
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/
%G en
%F AUPO_2013_52_1_a2
Cahen, Benjamin. Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/

[1] Arnal, D., Cortet, J.-C.: Nilpotent Fourier transform and applications. Lett. Math. Phys. 9 (1985), 25–34. | DOI | MR | Zbl

[2] Bar-Moshe, D.: A method for weight multiplicity computation based on Berezin quantization. SIGMA 5 (2009), 091, 1–12. | MR | Zbl

[3] Bar-Moshe, D., Marinov, M. S.: Realization of compact Lie algebras in Kähler manifolds. J. Phys. A: Math. Gen. 27 (1994), 6287–6298. | DOI | MR | Zbl

[4] Berezin, F. A.: Quantization. Math. USSR Izv. 8, 5 (1974), 1109–1165. | DOI | Zbl

[5] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR Izv. 9, 2 (1975), 341–379. | DOI

[6] Berceanu, S.: A holomorphic representation of the Jacobi algebra. Rev. Math. Phys. 18 (2006), 163–199. | DOI | MR | Zbl

[7] Berceanu, S., Gheorghe, A.: On the geometry of Siegel–Jacobi domains. Int. J. Geom. Methods Mod. Phys. 8 (2011), 1783–1798. | DOI | MR | Zbl

[8] Bernatska, J., Holod, P.: Geometry and topology of coadjoint orbits of semisimple Lie groups. Mladenov, I. M., de León, M. (eds) Proceedings of the 9th international conference on ’Geometry, Integrability and Quantization’, June 8–13, 2007, Varna, Bulgarian Academy of Sciences, Sofia, 2008, 146–166. | MR | Zbl

[9] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group. Math. Z. 204 (1990), 13–44. | DOI | MR | Zbl

[10] Berndt, R., Schmidt, R.: Elements of the Representation Theory of the Jacobi Group. Progress in Mathematics 163, Birkhäuser Verlag, Basel, 1988. | MR

[11] Cahen, B.: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65–75. | DOI | MR | Zbl

[12] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg. In: Mathematical works, Part XV, Séminaire de Mathématique Université du Luxembourg, Luxembourg, (2004), 19–43. | MR | Zbl

[13] Cahen, B.: Weyl quantization for semidirect products. Diff. Geom. Appl. 25 (2007), 177–190. | DOI | MR | Zbl

[14] Cahen, B.: Multiplicities of compact Lie group representations via Berezin quantization. Mat. Vesnik 60 (2008), 295–309. | MR | Zbl

[15] Cahen, B.: Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53, 1 (2009), 265–288. | MR | Zbl

[16] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84. | MR | Zbl

[17] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. | MR | Zbl

[18] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311. | MR

[19] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47 (2011), 41–58. | MR | Zbl

[20] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova, to appear.

[21] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7 (1990), 45–62. | DOI | MR

[22] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds III. Lett. Math. Phys. 30 (1994), 291–305. | DOI | MR

[23] Cotton, P., Dooley, A. H.: Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164. | MR | Zbl

[24] Folland, B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, Princeton, 1989. | MR | Zbl

[25] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island, 2001. | MR | Zbl

[26] Kirillov, A. A.: Lectures on the Orbit Method, Graduate Studies in Mathematics. 64, American Mathematical Society, Providence, Rhode Island, 2004. | MR

[27] Kostant, B.: Quantization and unitary representations. In: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 87–207. | MR | Zbl

[28] Neeb, K-H.: Holomorphy and Convexity in Lie Theory. de Gruyter Expositions in Mathematics 28, Walter de Gruyter, Berlin, New York, 2000. | MR

[29] Satake, I: Algebraic Structures of Symmetric Domains. Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971. | MR

[30] Skrypnik, T. V.: Coadjoint orbits of compact Lie groups and generalized stereographic projection. Ukr. Math. J. 51 (1999), 1939–1944. | DOI | MR

[31] Varadarajan, V. S.: Lie groups, Lie Algebras and Their Representations. Graduate Texts in Mathematics 102, Springer-Verlag, Berlin, 1984. | MR | Zbl