Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 35-48
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak g$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak g}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal O}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.
Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak g$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak g}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal O}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.
Classification :
22E10, 22E15, 22E45, 32M05, 32M10, 32M15, 81S10
Keywords: quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group
Keywords: quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group
@article{AUPO_2013_52_1_a2,
author = {Cahen, Benjamin},
title = {Global {Parametrization} of {Scalar} {Holomorphic} {Coadjoint} {Orbits} of a {Quasi-Hermitian} {Lie} {Group}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {35--48},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202747},
zbl = {06285752},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/}
}
TY - JOUR AU - Cahen, Benjamin TI - Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 35 EP - 48 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/ LA - en ID - AUPO_2013_52_1_a2 ER -
%0 Journal Article %A Cahen, Benjamin %T Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 35-48 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/ %G en %F AUPO_2013_52_1_a2
Cahen, Benjamin. Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a2/