On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 135-152 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^{\prime }(t) \right)^{\prime } + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^{\prime }(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb {R}$ and has at least three zeros $L_0 0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.
We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^{\prime }(t) \right)^{\prime } + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^{\prime }(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb {R}$ and has at least three zeros $L_0 0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.
Classification : 34A12, 34D05
Keywords: singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; Kneser solutions; damped solutions; non-oscillatory solutions
@article{AUPO_2013_52_1_a10,
     author = {Vampolov\'a, Jana},
     title = {On {Existence} and {Asymptotic} {Properties} of {Kneser} {Solutions} to {Singular} {Second} {Order} {ODE}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {135--152},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202755},
     zbl = {06285760},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a10/}
}
TY  - JOUR
AU  - Vampolová, Jana
TI  - On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 135
EP  - 152
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a10/
LA  - en
ID  - AUPO_2013_52_1_a10
ER  - 
%0 Journal Article
%A Vampolová, Jana
%T On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 135-152
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a10/
%G en
%F AUPO_2013_52_1_a10
Vampolová, Jana. On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 135-152. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a10/

[1] Abraham, F. F.: Homogeneous Nucleation Theory. Acad. Press, New York, 1974.

[2] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. | DOI | MR | Zbl

[3] Bongiorno, V., Scriven, L. E., Davis, H. T.: Molecular theory of fluid interfaces. J. Colloid and Interface Science 57 (1967), 462–475. | DOI

[4] Cecchi, M., Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differential Equations 118 (1995), 403–419. | DOI | MR | Zbl

[5] Cecchi, M., Marini, M., Villari, G.: Comparison results for oscillation of nonlinear differential equations. NoDea 6 (1999), 173–190. | DOI | MR | Zbl

[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252–1254. | DOI | MR

[7] Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture notes in Biomathematics Springer 28 (1979), 223–224. | MR | Zbl

[8] Fischer, R. A.: The wave of advance of advantageous genes. Journ. of Eugenics 7 (1937), 355–369. | DOI

[9] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255–260. | DOI | Zbl

[10] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Analysis 41 (2000), 573–589. | DOI | MR | Zbl

[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Analysis 64 (2006), 762–787. | DOI | MR | Zbl

[12] Kiguradze, I., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993. | MR | Zbl

[13] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Applied Mathematics Letters 13 (2000), 107–110. | DOI | MR

[14] Kusano, T., Manojlović, J. V.: Asymptotic analysis of Emden-Fowler differential equations in the framework of regular variation. Annali di Matematica Pura ed Applicata 190 (2011), 619–644. | DOI | MR | Zbl

[15] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for sublinear Emden-Fowler equations. Nonlinear Analysis 64 (2006), 1641–1646. | DOI | MR | Zbl

[16] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for superlinear Emden–Fowler equations with near-critical coefficients. J. Differential Equations 238 (2007), 18–42. | DOI | MR | Zbl

[17] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. | DOI | Zbl

[18] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical–numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. | DOI | MR | Zbl

[19] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.

[20] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. | DOI | MR | Zbl

[21] O’Regan, D.: Existence theory for nonlinear ordinary differential equations. Kluwer, Dordrecht, 1997. | MR | Zbl

[22] Rachůnková, I., Rachůnek, L.: Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation. Abstract and Applied Analysis 2011 (2011), 1–9. | Zbl

[23] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problem. Mathematical and Computer Modelling 51 (2010), 658–669. | DOI

[24] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstract and Applied Analysis 2011 (2011), 20 pages. | MR | Zbl

[25] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Analysis 72 (2010), 2114–2118. | DOI | MR | Zbl

[26] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Boundary Value Problems 2009 (2009), 1–21. | Zbl

[27] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127. | MR | Zbl

[28] van der Waals, J. D., Kohnstamm, R.: Lehrbuch der Thermodynamik. 1, Leipzig, 1908.

[29] Wong, J. S. W.: Second–order nonlinear oscillations: A case history. In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138. | MR | Zbl

[30] Wong, P. J. Y., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. | DOI | MR | Zbl

[31] Wong, P. J. Y., Agarwal, R. P.: The oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comput. 79 (1996),207–237. | MR