Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 21-34
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
@article{AUPO_2013_52_1_a1,
author = {Aouf, M. K. and El-Ashwah, R. M. and Hassan, A. A. M. and Hassan, A. H.},
title = {Fekete{\textendash}Szeg\"o {Problem} for a {New} {Class} of {Analytic} {Functions} {Defined} by {Using} a {Generalized} {Differential} {Operator}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {21--34},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202746},
zbl = {06285751},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/}
}
TY - JOUR AU - Aouf, M. K. AU - El-Ashwah, R. M. AU - Hassan, A. A. M. AU - Hassan, A. H. TI - Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 21 EP - 34 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/ LA - en ID - AUPO_2013_52_1_a1 ER -
%0 Journal Article %A Aouf, M. K. %A El-Ashwah, R. M. %A Hassan, A. A. M. %A Hassan, A. H. %T Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 21-34 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/ %G en %F AUPO_2013_52_1_a1
Aouf, M. K.; El-Ashwah, R. M.; Hassan, A. A. M.; Hassan, A. H. Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/