Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 21-34 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions $f(z)\in \mathcal {A} $ for which $1+\frac{1}{b}\Big ( \frac{z\left( D_{\alpha ,\beta ,\lambda ,\delta }^n f(z)\right)^{\prime }}{D_{\alpha ,\beta ,\lambda ,\delta }^{n}f(z)}-1\Big )$ ($\alpha ,\beta ,\lambda ,\delta \ge 0$; $\beta >\alpha $; $\lambda >\delta $; $b\in \mathbb {C}^{\ast }$; $n\in \mathbb {N}_{0}$; $z\in U$) lies in a region starlike with respect to $1$ and is symmetric with respect to the real axis.
Classification : 30C45
Keywords: analytic; subordination; Fekete–Szegö problem
@article{AUPO_2013_52_1_a1,
     author = {Aouf, M. K. and El-Ashwah, R. M. and Hassan, A. A. M. and Hassan, A. H.},
     title = {Fekete{\textendash}Szeg\"o {Problem} for a {New} {Class} of {Analytic} {Functions} {Defined} by {Using} a {Generalized} {Differential} {Operator}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {21--34},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202746},
     zbl = {06285751},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/}
}
TY  - JOUR
AU  - Aouf, M. K.
AU  - El-Ashwah, R. M.
AU  - Hassan, A. A. M.
AU  - Hassan, A. H.
TI  - Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 21
EP  - 34
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/
LA  - en
ID  - AUPO_2013_52_1_a1
ER  - 
%0 Journal Article
%A Aouf, M. K.
%A El-Ashwah, R. M.
%A Hassan, A. A. M.
%A Hassan, A. H.
%T Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 21-34
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/
%G en
%F AUPO_2013_52_1_a1
Aouf, M. K.; El-Ashwah, R. M.; Hassan, A. A. M.; Hassan, A. H. Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a1/

[1] Al-Oboudi, F. M.: On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 27 (2004), 1429–1436. | DOI | MR | Zbl

[2] Aouf, M. K., Darwish, H. E., Attiya, A. A.: On a class of certain analytic functions of complex order. Indian J. Pure Appl. Math. 32, 10 (2001), 1443–1452. | MR | Zbl

[3] Aouf, M. K., Owa, S., Obradović, M.: Certain classes of analytic functions of complex order and type beta. Rend. Mat. Appl. (7) 11, 4 (1991), 691–714. | MR | Zbl

[4] Aouf, M. K., Silverman, H.: Fekete–Szegö inequality for $n$-starlike functions of complex order. Adv. Math. Sci. J. (2008), 1–12.

[5] Chichra, P. N.: Regular functions $f(z)$ for which $zf^{\prime }(z)$ is $\alpha $-spirallike. Proc. Amer. Math. Soc. 49 (1975), 151–160. | MR | Zbl

[6] Darus, M., Ibrahim, R. W.: On subclasses for generalized operators of complex order. Far East J. Math. Sci. 33, 3 (2009), 299–308. | MR | Zbl

[7] Fekete, M., Szegö, G.: Eine bemerkung uber ungerade schlichte funktionen. J. London Math. Soc. 8 (1933), 85–89. | DOI

[8] Goyal, S. P., Kumar, S.: Fekete-Szegö problem for a class of complex order related to Salagean operator. Bull. Math. Anal. Appl. 3, 4 (2011), 240–246. | MR

[9] Keogh, F. R., Merkes, E. P.: A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20, 1 (1969), 8–12. | DOI | MR | Zbl

[10] Libera, R. J.: Univalent $\alpha $-spiral functions. Canad. J. Math. 19 (1967), 449–456. | DOI | MR | Zbl

[11] Libera, R. J., Ziegler, M.: Regular functions $f(z)$ for which $zf^{\prime }(z)$ is $\alpha $-spiral. Trans. Amer. Math. Soc. 166 (1972), 361–370. | MR | Zbl

[12] Ma, W., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li, Z., Ren, F., Lang, L., Zhang, S. (eds.): Proceedings of the conference on complex analysis, Int. Press. Conf. Proc. Lect. Notes Anal. Tianjin, China, 1 (1994), 157–169. | MR | Zbl

[13] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Series on Monographs and Textbooks in Pure and Appl. Math. 255, Marcel Dekker, Inc., New York, 2000. | MR | Zbl

[14] Nasr, M. A., Aouf, M. K.: On convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 9 (1982), 565–582.

[15] Nasr, M. A., Aouf, M. K.: Bounded convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 10 (1983), 513–527.

[16] Nasr, M. A., Aouf, M. K.: Bounded starlike functions of complex order. Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97–102. | DOI | MR | Zbl

[17] Nasr, M. A., Aouf, M. K.: Starlike function of complex order. J. Natur. Sci. Math. 25 (1985), 1–12. | MR | Zbl

[18] Ramadan, S. F., Darus, M.: On the Fekete Szegö inequality for a class of analytic functions defined by using generalized differential operator. Acta Univ. Apulensis 26 (2011), 167–178. | MR | Zbl

[19] Ravichandran, V., Polatoglu, Y., Bolcal, M., Sen, A.: Certain subclasses of starlike and convex functions of complex order. Hacettepe J. Math. Stat. 34 (2005), 9–15. | MR | Zbl

[20] Salagean, G. S.: Subclasses of univalent functions. Lecture Notes in Math. 1013 (1983), Springer-Verlag, Berlin, 362–372. | MR | Zbl