Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 5-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].
Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].
Classification :
06E30, 34K13, 34K30, 34L30
Keywords: fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations
Keywords: fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations
@article{AUPO_2013_52_1_a0,
author = {Ardjouni, Abdelouaheb and Djoudi, Ahc\`ene},
title = {Existence of {Periodic} {Solutions} for {Nonlinear} {Neutral} {Dynamic} {Equations} with {Functional} {Delay} on a {Time} {Scale}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {5--19},
year = {2013},
volume = {52},
number = {1},
mrnumber = {3202745},
zbl = {1290.34109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/}
}
TY - JOUR AU - Ardjouni, Abdelouaheb AU - Djoudi, Ahcène TI - Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 5 EP - 19 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/ LA - en ID - AUPO_2013_52_1_a0 ER -
%0 Journal Article %A Ardjouni, Abdelouaheb %A Djoudi, Ahcène %T Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 5-19 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/ %G en %F AUPO_2013_52_1_a0
Ardjouni, Abdelouaheb; Djoudi, Ahcène. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/