Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 5-19 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].
Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].
Classification : 06E30, 34K13, 34K30, 34L30
Keywords: fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations
@article{AUPO_2013_52_1_a0,
     author = {Ardjouni, Abdelouaheb and Djoudi, Ahc\`ene},
     title = {Existence of {Periodic} {Solutions} for {Nonlinear} {Neutral} {Dynamic} {Equations} with {Functional} {Delay} on a {Time} {Scale}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--19},
     year = {2013},
     volume = {52},
     number = {1},
     mrnumber = {3202745},
     zbl = {1290.34109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/}
}
TY  - JOUR
AU  - Ardjouni, Abdelouaheb
AU  - Djoudi, Ahcène
TI  - Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 5
EP  - 19
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/
LA  - en
ID  - AUPO_2013_52_1_a0
ER  - 
%0 Journal Article
%A Ardjouni, Abdelouaheb
%A Djoudi, Ahcène
%T Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 5-19
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/
%G en
%F AUPO_2013_52_1_a0
Ardjouni, Abdelouaheb; Djoudi, Ahcène. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/AUPO_2013_52_1_a0/

[1] Adıvar, M., Raffoul, Y. N.: Existence of periodic solutions in totally nonlinear delay dynamic equations. Electronic Journal of Qualitative Theory of Differential Equations 2009, 1 (2009), 1–20. | MR | Zbl

[2] Ardjouni, A., Djoudi, A.: Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Commun Nonlinear Sci Numer Simulat 17 (2012), 3061–3069. | DOI | MR | Zbl

[3] Ardjouni, A., Djoudi, A.: Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale. Rend. Sem. Mat. Univ. Politec. Torino 68, 4 (2010), 349–359. | MR | Zbl

[4] Atici, F. M., Guseinov, G. Sh., Kaymakcalan, B.: Stability criteria for dynamic equations on time scales with periodic coefficients. In: Proceedings of the International Confernce on Dynamic Systems and Applications 3, 3 (1999), 43–48. | MR

[5] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications. Birkhäuser, Boston, 2001. | MR | Zbl

[6] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. | MR | Zbl

[7] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9, 2 (2002), 181–190. | MR | Zbl

[8] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover, New York, 2006. | MR | Zbl

[9] Deham, H., Djoudi, A.: Periodic solutions for nonlinear differential equation with functional delay. Georgian Mathematical Journal 15, 4 (2008), 635–642. | MR | Zbl

[10] Deham, H., Djoudi, A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electronic Journal of Differential Equations 127, (2010), 1–8. | MR | Zbl

[11] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph. D. thesis, Universität Würzburg, Würzburg, 1988. | Zbl

[12] Kaufmann, E. R., Raffoul, Y. N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319 32, 1 (2006), 315–325. | DOI | MR | Zbl

[13] Kaufmann, E. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear dynamic equation with functional delay on a time scale. Electronic Journal of Differential Equations 27 (2007), 1–12. | MR

[14] Smart, D. R.: Fixed point theorems. Cambridge Tracts in Mathematics 66, Cambridge University Press, London–New York, 1974. | MR | Zbl

[15] Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay. Opuscula Mathematica 32, 3 (2012), 617–627. | DOI | MR | Zbl