Keywords: singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions
@article{AUPO_2012_51_2_a8,
author = {Rohleder, Martin},
title = {On the {Existence} of {Oscillatory} {Solutions} of the {Second} {Order} {Nonlinear} {ODE}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {107--127},
year = {2012},
volume = {51},
number = {2},
mrnumber = {3058877},
zbl = {06204934},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/}
}
TY - JOUR AU - Rohleder, Martin TI - On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 107 EP - 127 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/ LA - en ID - AUPO_2012_51_2_a8 ER -
%0 Journal Article %A Rohleder, Martin %T On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 107-127 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/ %G en %F AUPO_2012_51_2_a8
Rohleder, Martin. On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 107-127. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/
[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. | DOI | MR | Zbl
[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differ. Equations 118, 2 (1995), 403–419. | DOI | MR | Zbl
[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. | DOI | Zbl
[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. | DOI | MR | Zbl
[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. | Zbl
[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. | DOI | MR | Zbl
[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. | DOI | MR
[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. | DOI | MR | Zbl
[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. | DOI | MR | Zbl
[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.
[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. | Zbl
[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. | MR | Zbl
[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. | DOI | MR | Zbl
[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. | Zbl
[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. | DOI | Zbl
[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. | MR | Zbl
[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. | DOI | MR | Zbl
[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. | MR | Zbl
[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. | MR | Zbl
[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. | DOI | MR | Zbl