On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 107-127
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
Classification :
34A12, 34C11, 34C15, 34D05
Keywords: singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions
Keywords: singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions
@article{AUPO_2012_51_2_a8,
author = {Rohleder, Martin},
title = {On the {Existence} of {Oscillatory} {Solutions} of the {Second} {Order} {Nonlinear} {ODE}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {107--127},
year = {2012},
volume = {51},
number = {2},
mrnumber = {3058877},
zbl = {06204934},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/}
}
TY - JOUR AU - Rohleder, Martin TI - On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 107 EP - 127 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/ LA - en ID - AUPO_2012_51_2_a8 ER -
%0 Journal Article %A Rohleder, Martin %T On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 107-127 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/ %G en %F AUPO_2012_51_2_a8
Rohleder, Martin. On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 107-127. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/