On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 107-127 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
Classification : 34A12, 34C11, 34C15, 34D05
Keywords: singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions
@article{AUPO_2012_51_2_a8,
     author = {Rohleder, Martin},
     title = {On the {Existence} of {Oscillatory} {Solutions} of the {Second} {Order} {Nonlinear} {ODE}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {107--127},
     year = {2012},
     volume = {51},
     number = {2},
     mrnumber = {3058877},
     zbl = {06204934},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/}
}
TY  - JOUR
AU  - Rohleder, Martin
TI  - On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 107
EP  - 127
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/
LA  - en
ID  - AUPO_2012_51_2_a8
ER  - 
%0 Journal Article
%A Rohleder, Martin
%T On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 107-127
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/
%G en
%F AUPO_2012_51_2_a8
Rohleder, Martin. On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 107-127. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a8/

[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. | DOI | MR | Zbl

[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differ. Equations 118, 2 (1995), 403–419. | DOI | MR | Zbl

[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. | DOI | Zbl

[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. | DOI | MR | Zbl

[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. | Zbl

[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. | DOI | MR | Zbl

[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. | DOI | MR

[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. | DOI | MR | Zbl

[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. | DOI | MR | Zbl

[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.

[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. | Zbl

[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. | MR | Zbl

[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. | DOI | MR | Zbl

[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. | Zbl

[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. | DOI | Zbl

[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. | MR | Zbl

[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. | DOI | MR | Zbl

[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. | MR | Zbl

[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. | MR | Zbl

[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. | DOI | MR | Zbl