Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 41-51
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets.
Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets.
Classification :
03G25, 06A12, 06A15, 08A35
Keywords: adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; filter; Hilbert algebra; implicative semilattice; subtraction
Keywords: adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; filter; Hilbert algebra; implicative semilattice; subtraction
@article{AUPO_2012_51_2_a3,
author = {C\={i}rulis, J\={a}nis},
title = {Adjoint {Semilattice} and {Minimal} {Brouwerian} {Extensions} of a {Hilbert} {Algebra}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {41--51},
year = {2012},
volume = {51},
number = {2},
mrnumber = {3058872},
zbl = {06204929},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a3/}
}
TY - JOUR AU - Cīrulis, Jānis TI - Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 41 EP - 51 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a3/ LA - en ID - AUPO_2012_51_2_a3 ER -
%0 Journal Article %A Cīrulis, Jānis %T Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 41-51 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a3/ %G en %F AUPO_2012_51_2_a3
Cīrulis, Jānis. Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 41-51. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a3/