Keywords: fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution
@article{AUPO_2012_51_2_a2,
author = {Brestovansk\'a, Eva and Medve\v{d}, Milan},
title = {Fixed {Point} {Theorems} of the {Banach} and {Krasnosel{\textquoteright}skii} {Type} for {Mappings} on $m$-tuple {Cartesian} {Product} of {Banach} {Algebras} and {Systems} of {Generalized} {Gripenberg{\textquoteright}s} {Equations}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {27--39},
year = {2012},
volume = {51},
number = {2},
mrnumber = {3058871},
zbl = {06204928},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a2/}
}
TY - JOUR AU - Brestovanská, Eva AU - Medveď, Milan TI - Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 27 EP - 39 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a2/ LA - en ID - AUPO_2012_51_2_a2 ER -
%0 Journal Article %A Brestovanská, Eva %A Medveď, Milan %T Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 27-39 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a2/ %G en %F AUPO_2012_51_2_a2
Brestovanská, Eva; Medveď, Milan. Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 27-39. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a2/
[1] Abdeldaim, A.: On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic model. J. Integral Equations Appl. (2011), (to appear). | MR
[2] Banas, J., Sadarangani, K.: Solutions of some functional-integral equations in Banach Algebra. Math. Comput. Modelling 38 (2003), 245–250. | DOI | MR | Zbl
[3] Banas, J., Lacko, M.: Fixed points of the product of operators in Banach algebra. Panamer. Math. J. 12 (2002), 101–109. | MR
[4] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Mathematica Hungarica 7, 1 (1956), 81–94. | DOI | MR | Zbl
[5] Brestovanská, E.: Qualitative behaviour of an integral equation related to some epidemic model. Demonstratio Math. 36, 3 (2003), 604–609. | MR | Zbl
[6] Djebali, S., Hammache, K.: Furi-Pera fixed point theorems in Banach algebra with applications. Acta Univ. Palacki. Olomouc, Fac. Rer. Nat., Math. 47 (2008), 55–75. | MR
[7] Gripenberg, G.: On some epidmic models. Quart. Appl. Math. 39 (1981), 317–327. | MR
[8] Krasnosel’skii, M. A.: Two remarks on the method of succesive approximations. Uspechi Mat. Nauk 10 (1955), 123–127. | MR
[9] Olaru, I. M.: An integral equation via weakly Picard operators. Fixed Point Theory 11, 1 (2010), 97–106. | MR | Zbl
[10] Olaru, I. M.: Generalization of an integral equation related to some epidemic models. Carpatian J. Math. 26 (2010), 0–4. | MR | Zbl
[11] Zeidler, E.: Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, Vol. 108, Springer-Verlag, New York, 1995. | DOI | MR | Zbl