Stability of Noor Iteration for a General Class of Functions in Banach Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 19-25 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.
In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.
Classification : 47H10, 47J25, 54H25
Keywords: stability; Noor and Ishikawa iterations
@article{AUPO_2012_51_2_a1,
     author = {Bosede, Alfred Olufemi},
     title = {Stability of {Noor} {Iteration} for a {General} {Class} of {Functions} in {Banach} {Spaces}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {19--25},
     year = {2012},
     volume = {51},
     number = {2},
     mrnumber = {3058870},
     zbl = {06204927},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/}
}
TY  - JOUR
AU  - Bosede, Alfred Olufemi
TI  - Stability of Noor Iteration for a General Class of Functions in Banach Spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 19
EP  - 25
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/
LA  - en
ID  - AUPO_2012_51_2_a1
ER  - 
%0 Journal Article
%A Bosede, Alfred Olufemi
%T Stability of Noor Iteration for a General Class of Functions in Banach Spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 19-25
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/
%G en
%F AUPO_2012_51_2_a1
Bosede, Alfred Olufemi. Stability of Noor Iteration for a General Class of Functions in Banach Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 19-25. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/

[1] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. | MR | Zbl

[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. | MR | Zbl

[3] Bosede, A. O.: Noor iterations associated with Zamfirescu mappings in uniformly convex Banach spaces. Fasciculi Mathematici 42 (2009), 29–38. | MR | Zbl

[4] Bosede, A. O.: Some common fixed point theorems in normed linear spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49, 1 (2010), 19–26. | MR

[5] Bosede, A. O.: Strong convergence results for the Jungck–Ishikawa and Jungck-Mann iteration processes. Bulletin of Mathematical Analysis and Applications 2, 3 (2010), 65–73. | MR

[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iterations for a general class of functions. Journal of Advanced Mathematical Studies 3, 2 (2010), 23–25. | MR

[7] Bosede, A. O., Akinbo, G.: Some stability theorems associated with $A$-distance and $E$-distance in uniform spaces. Acta Universitatis Apulensis 26 (2011), 121–128. | MR | Zbl

[8] Ciric, L. B.: Fixed point theorems in Banach spaces. Publ. Inst. Math. (Beograd) 47, 61 (1990), 85–87. | MR | Zbl

[9] Ciric, L. B.: Fixed Point Theory. Contraction Mapping Principle. FME Press, Beograd, 2003.

[10] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Japonica 33 (1988), 693–706. | MR | Zbl

[11] Imoru, C. O., Akinbo, G., Bosede, A. O.: On the fixed points for weak compatible type and parametrically $\varphi (\epsilon , \delta ; a)$-contraction mappings. Math. Sci. Res. Journal 10, 10 (2006), 259–267. | MR

[12] Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003), 155–160. | MR | Zbl

[13] Imoru, C. O., Olatinwo, M. O., Akinbo, G., Bosede, A. O.: On a version of the Banach’s fixed point theorem. General Mathematics 16, 1 (2008), 25–32. | MR | Zbl

[14] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl

[15] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR

[16] Noor, M. A.: General variational inequalities. Appl. Math. Letters 1 (1988), 119–121. | DOI | MR | Zbl

[17] Noor, M. A.: New approximations schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217–299. | DOI | MR

[18] Noor, M. A.: Some new developments in general variational inequalities. Appl. Math. Computation 152 (2004), 199–277. | MR

[19] Noor, M. A., Noor, K. I., Rassias, T. M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47 (1993), 493–512. | MR | Zbl

[20] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/1996), 17–29. | MR

[21] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. | DOI | MR | Zbl

[22] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 2 (1976), 741–750. | DOI | MR | Zbl

[23] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. | MR | Zbl

[24] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory, 1950–2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl

[25] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292–298. | DOI | MR | Zbl

[26] Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed Point Theorems. Springer, New York, 1986. | MR