@article{AUPO_2012_51_2_a1,
author = {Bosede, Alfred Olufemi},
title = {Stability of {Noor} {Iteration} for a {General} {Class} of {Functions} in {Banach} {Spaces}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {19--25},
year = {2012},
volume = {51},
number = {2},
mrnumber = {3058870},
zbl = {06204927},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/}
}
TY - JOUR AU - Bosede, Alfred Olufemi TI - Stability of Noor Iteration for a General Class of Functions in Banach Spaces JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 19 EP - 25 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/ LA - en ID - AUPO_2012_51_2_a1 ER -
%0 Journal Article %A Bosede, Alfred Olufemi %T Stability of Noor Iteration for a General Class of Functions in Banach Spaces %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 19-25 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/ %G en %F AUPO_2012_51_2_a1
Bosede, Alfred Olufemi. Stability of Noor Iteration for a General Class of Functions in Banach Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 19-25. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a1/
[1] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. | MR | Zbl
[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. | MR | Zbl
[3] Bosede, A. O.: Noor iterations associated with Zamfirescu mappings in uniformly convex Banach spaces. Fasciculi Mathematici 42 (2009), 29–38. | MR | Zbl
[4] Bosede, A. O.: Some common fixed point theorems in normed linear spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49, 1 (2010), 19–26. | MR
[5] Bosede, A. O.: Strong convergence results for the Jungck–Ishikawa and Jungck-Mann iteration processes. Bulletin of Mathematical Analysis and Applications 2, 3 (2010), 65–73. | MR
[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iterations for a general class of functions. Journal of Advanced Mathematical Studies 3, 2 (2010), 23–25. | MR
[7] Bosede, A. O., Akinbo, G.: Some stability theorems associated with $A$-distance and $E$-distance in uniform spaces. Acta Universitatis Apulensis 26 (2011), 121–128. | MR | Zbl
[8] Ciric, L. B.: Fixed point theorems in Banach spaces. Publ. Inst. Math. (Beograd) 47, 61 (1990), 85–87. | MR | Zbl
[9] Ciric, L. B.: Fixed Point Theory. Contraction Mapping Principle. FME Press, Beograd, 2003.
[10] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Japonica 33 (1988), 693–706. | MR | Zbl
[11] Imoru, C. O., Akinbo, G., Bosede, A. O.: On the fixed points for weak compatible type and parametrically $\varphi (\epsilon , \delta ; a)$-contraction mappings. Math. Sci. Res. Journal 10, 10 (2006), 259–267. | MR
[12] Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003), 155–160. | MR | Zbl
[13] Imoru, C. O., Olatinwo, M. O., Akinbo, G., Bosede, A. O.: On a version of the Banach’s fixed point theorem. General Mathematics 16, 1 (2008), 25–32. | MR | Zbl
[14] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl
[15] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR
[16] Noor, M. A.: General variational inequalities. Appl. Math. Letters 1 (1988), 119–121. | DOI | MR | Zbl
[17] Noor, M. A.: New approximations schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217–299. | DOI | MR
[18] Noor, M. A.: Some new developments in general variational inequalities. Appl. Math. Computation 152 (2004), 199–277. | MR
[19] Noor, M. A., Noor, K. I., Rassias, T. M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47 (1993), 493–512. | MR | Zbl
[20] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/1996), 17–29. | MR
[21] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. | DOI | MR | Zbl
[22] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 2 (1976), 741–750. | DOI | MR | Zbl
[23] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. | MR | Zbl
[24] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory, 1950–2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl
[25] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292–298. | DOI | MR | Zbl
[26] Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed Point Theorems. Springer, New York, 1986. | MR