Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 5-18 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
Classification : 26A33, 35A01, 35R11, 35R12
Keywords: partial hyperbolic differential equation; fractional order; left-sided mixed; Riemann–Liouville integral; mixed regularized derivative; impulse; upper solution; lower solution; fixed point
@article{AUPO_2012_51_2_a0,
     author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak},
     title = {Upper and {Lower} {Solutions} {Method} for {Darboux} {Problem} for {Fractional} {Order} {Implicit} {Impulsive} {Partial} {Hyperbolic} {Differential} {Equations}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--18},
     year = {2012},
     volume = {51},
     number = {2},
     mrnumber = {3058869},
     zbl = {06204926},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a0/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Benchohra, Mouffak
TI  - Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 5
EP  - 18
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a0/
LA  - en
ID  - AUPO_2012_51_2_a0
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%T Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 5-18
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a0/
%G en
%F AUPO_2012_51_2_a0
Abbas, Saïd; Benchohra, Mouffak. Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 5-18. http://geodesic.mathdoc.fr/item/AUPO_2012_51_2_a0/

[1] Abbas, S., Agarwal, R. P., Benchohra, M.: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay. Nonlinear Anal. Hybrid Syst. 4 (2010), 818–829. | MR | Zbl

[2] Abbas, S., Benchohra, M.: Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative. Commun. Math. Anal. 7 (2009), 62–72. | MR | Zbl

[3] Abbas, S., Benchohra, M.: Upper and lower solutions method for the Darboux problem for fractional order partial differential inclusions. Int. J. Modern Math. 5, 3 (2010), 327–338. | MR | Zbl

[4] Abbas, S., Benchohra, M.: Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal. Hybrid Syst. 4 (2010), 406–413. | MR | Zbl

[5] Abbas, S., Benchohra, M.: The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses. Discuss. Math. Differ. Incl. Control Optim. 30, 1 (2010), 141–161. | DOI | MR | Zbl

[6] Abbas, S., Benchohra, M., Górniewicz, L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. e-2010 (2010), 271–282, online. | MR | Zbl

[7] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Developments in Mathematics 27, Springer, New York, 2012. | MR | Zbl

[8] Abbas, S., Benchohra, M., Nieto, J. J.: Global uniqueness results for fractional order partial hyperbolic functional differential equations. Adv. Differ. Equations ID 379876, doi:10.1155/2011/379876 (2011), 1–25, online. | MR | Zbl

[9] Abbas, S., Benchohra, M., Vityuk, A. N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. | MR

[10] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57–68. | DOI | MR | Zbl

[11] Benchohra, M., Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85 (2006), 1459–1470. | DOI | MR | Zbl

[12] Benchohra, M., Graef, J. R., Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87, 7 (2008), 851–863. | DOI | MR

[13] Benchohra, M., Hamani, S., Ntouyas, S. K.: Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3 (2008), 1–12. | MR | Zbl

[14] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol 2, New York, 2006. | MR | Zbl

[15] Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A.: Existence results for functional differential equations of fractional order. J. Math. Anal. Appl. 338 (2008), 1340–1350. | DOI | MR

[16] Diethelm, K., Ford, N. J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248. | DOI | MR | Zbl

[17] Glockle, W. G., Nonnenmacher, T. F.: A fractional calculus approach of selfsimilar protein dynamics. Biophys. J. 68 (1995), 46–53. | DOI

[18] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl

[19] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | MR | Zbl

[20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[21] Kilbas, A. A., Marzan, S. A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84–89. | DOI | MR | Zbl

[22] Lakshmikantham, V., Bainov D. D., Simeonov, P. S.: Theory of Impulsive Differntial Equations. World Scientific, Singapore, 1989. | MR

[23] Lakshmikantham, V., Pandit, S. G.: The Method of upper, lower solutions and hyperbolic partial differential equations. J. Math. Anal. Appl. 105 (1985), 466–477. | DOI | MR | Zbl

[24] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds) Fractional Calculus in Continuum Mechanics Springer-Verlag, Wien, 1997, 291–348. | MR

[25] Metzler, F., Schick, W., Kilian, H. G., Nonnenmacher, T. F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103 (1995), 7180–7186. | DOI

[26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993. | MR

[27] Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press, New York, London, 1974. | MR | Zbl

[28] Pandit, S. G.: Monotone methods for systems of nonlinear hyperbolic problems in two independent variables. Nonlinear Anal. 30 (1997), 235–272. | DOI | MR | Zbl

[29] Podlubny, I., Petraš, I., Vinagre, B. M., O’Leary, P., Dorčak, L.: Analogue realizations of fractional-order controllers. fractional order calculus and its applications. Nonlinear Dynam. 29 (2002), 281–296. | MR

[30] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon, 1993. | MR | Zbl

[31] Staněk, S.: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 62 (2011), 1379–1388. | DOI | MR | Zbl

[32] Vityuk, A. N.: Existence of solutions of partial differential inclusions of fractional order. Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13–19. | MR

[33] Vityuk, A. N., Golushkov, A. V.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 3 (2004), 318–325. | DOI | MR

[34] Vityuk, A. N., Mykhailenko, A. V.: On a class of fractional-order differential equation. Nonlinear Oscil. 11, 3 (2008), 307–319. | DOI | MR

[35] Vityuk, A. N., Mykhailenko, A. V.: The Darboux problem for an implicit fractional-order differential equation. J. Math. Sci. 175, 4 (2011), 391–401. | DOI | MR | Zbl